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1 Introduction

In real-world matching markets, matching outcomes often diverge from socially desirable
results due to externalities, creating a gap between ideal and equilibrium matchings. To
address these distributional imbalances, policymakers may implement caps and quotas
as intervention strategies. Examples include race-based affirmative action in the United
States to promote racial diversity (Ellison and Pathak, 2021), gender quotas in electoral
systems worldwide to improve female representation (Besley et al., 2017) and residency
matching markets with caps on urban placements (Kamada and Kojima, 2015).

In certain matching markets, policymakers can directly restrict the number of real-
ized matches in different groups through centralized matching mechanisms. A prominent
example, and the focus of this paper, is the medical residency matching, where variants
of the Deferred Acceptance (DA) algorithm are employed to address distributional imbal-
ances. However, current practices exhibit two significant limitations. First, they do not
directly set floors for underserved groups; instead, they impose caps on popular groups
to encourage inflow into less favored ones, potentially leading to inefficiencies.1 Second,
these methods neglect endogenous transfers within matched pairs, such as salaries, bene-
fits, and training opportunities in residency markets, which are sensitive to policy changes.
Addressing distributional imbalances solely by adjusting the DA algorithm, without con-
sidering the equilibrium adjustments in transfers, risks misrepresenting actual market
behaviors.

This paper develops a framework for optimal taxation policy in transferable utility
matching markets under regional constraints, encompassing both caps and floors. Under
the optimal taxation policy, the policymaker achieves the highest social welfare among
the stable outcomes that adhere to the regional constraints. Furthermore, we extend the
framework to the setting introduced by Galichon and Salanié (2021a), which enables the
identification of model primitives based solely on the aggregate-level data and simulations
of equilibrium matching outcomes under a set of counterfactual scenarios. We apply this
framework to Japan’s residency matching market using newly collected data. Our sim-
ulation highlights the inefficiency of cap-based regulations: meeting regional constraints
requires significantly reducing the number of positions in urban areas, resulting in sub-

1This use of caps partly arises from technical constraints associated with DA-based approaches. A
feasible matching that satisfies the floors may not exist as long as submitting unacceptable partners is
allowed.
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stantial efficiency losses. In contrast, providing small subsidies to rural areas ensures
the floor conditions while achieving the higher social welfare than the current market
outcome.

Japan’s residency matching market serves as an ideal case for applying our model,
as distributional concerns have been central to the Japan Residency Matching Program
(JRMP) since its inception. Geographic disparities in physician distribution have long
challenged equitable healthcare access. Various solutions have been proposed to address
these imbalances, including the JRMP’s implementation of a DA algorithm with restricted
urban placements to incentivize matches in underserved regions. Despite progressively
stricter caps on urban placements over the past decade, distributional imbalances persist,
prompting the exploration of alternative strategies such as flexible DA (Kamada and
Kojima, 2015).

Our dataset encompasses the number of matches between each hospital and medical
school in the JRMP from 2016 to 2019, along with detailed characteristics of the hospitals
and schools, including the monthly salaries paid by hospitals to the matched medical
residents. Unlike the U.S. context, where factors other than salary predominantly drive
preferences, our descriptive analysis indicates that salary differences significantly influence
residency choices in Japan, particularly for rural placements. This observation motivates
endogenizing transfer between a pair in our model.

This study models matching markets with caps and floors, referred to as regional
constraints, by extending the matching with transferable utility model introduced by
Shapley and Shubik (1971). A regional constraint is an exogenously imposed policy goal
that specifies the lower and upper bounds on the number of matches in each region, which
may not be satisfied in equilibrium without intervention. We introduce a policymaker who
designs a taxation policy to influence equilibrium matching outcomes. Given the taxation
policy, the agents form a stable outcome. The policymaker aims to design the taxation
policy under which the equilibrium matching respects the regional constraints. For the
sake of empirical analysis, we extend our framework to the setting introduced by Galichon
and Salanié (2021a). This extension enables the identification of model primitives and
counterfactual simulations under different taxation policies (Proposition 1) and the design
of a welfare-maximizing taxation policy (Theorem 1).

For the empirical analysis, we start by defining the transfer between matched pairs
and then consider a measurement model for this transfer. To this end, we model the
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baseline utilities of both sides for each pair of agents. The transfer from the hospital
to the matched resident represents the gap between this baseline utility and the realized
utility level in equilibrium. By aggregating this transfer across the pairs within each
hospital, we construct an aggregate-level transfer. We then introduce a measurement
model for this aggregate-level transfer, which is linear in observed monthly salary. Our
estimation proceeds in two steps: first, we estimate the aggregate-level surplus split for
each pair of types, following Galichon and Salanié (2021a); second, based on these first-
step estimates, we recover the parameters in the baseline utilities and the measurement
model.

The estimation results partly align with those in the existing literature while also
presenting a departure from its assumptions. On the doctor’s side, our estimates indicate
that factors such as the distance between the hospital and the doctor’s alma mater,
as well as the hospital size, are significant. Furthermore, we find that the number of
previous matches is an important determinant of doctors’ preferences. These findings
are consistent with the existing literature, which suggests that hospitals are horizontally
differentiated from doctors’ perspectives. On the hospital’s side, we observe that hospitals
exhibit horizontal preferences similar to those of doctors: doctors from distant regions
are less preferred, in addition to considerations of quality. Such horizontal preference
structure on the hospital side is not allowed in the existing literature, which hinders the
identification of preferences from matching data.

Based on the estimates, we simulate matching markets under various settings. The
first set of simulations investigates the sources of inefficiencies inherent in the current
JRMP mechanism. Removing the caps on matches in urban counties substantially en-
hances social welfare by increasing the number of matches in these areas. While a few
rural counties fail to meet floor conditions under this scenario, these can be satisfied
through small targeted subsidies which result in the higher social welfare than the cur-
rent market outcome. The second set of simulations evaluates the efficiency of the flexible
DA mechanism (Kamada and Kojima, 2015), a recent approach for addressing regional
constraints. The results still indicate that, even with a flexible DA, aiming to resolve
distributional imbalances through cap-based regulation entails too many sacrifices com-
pared to monetary interventions. Achieving the floor conditions in rural counties requires
a roughly 34% reduction in capacity in urban counties. This leads to a welfare loss com-
pared to the current market outcome.
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Related literature Matching with constraints, initiated by Kamada and Kojima (2015),
has received considerable attention in various fields due to its applicability in real-world
scenarios. In economics, in addition to the medical residency matching program (Ka-
mada and Kojima, 2015), we can find theoretical analysis of school choice problem under
variants of affirmative actions (Abdulkadiroğlu and Sönmez, 2003; Ehlers et al., 2014;
Kojima, 2012; Hafalir, Yenmez and Yildirim, 2013). Most studies on constrained match-
ing markets adopt a non-transferable utility model, where preferences over potential
partners are exogenously defined outside the centralized mechanism. However, in many
markets, transfers—such as wages—are endogenously determined in equilibrium, influ-
enced by the mechanism itself, thereby impacting the match values between different
pairs. As mentioned in the Introduction, this endogeneity concern is particularly severe
in our markets. This necessitates an endogenous treatment of transfers, prompting us to
consider a transferable utility matching model under constraints.

Transferable utility matching model also has long tradition of studies. As classical
results, Shapley and Shubik (1971) provided the definition of stable outcome as an equi-
librium concept and its characterization from the view of the linear programming, and
Becker (1973) analyzed the sorting patterns under the equilibrium. Building on these
results, the transferable utility matching model has been widely accepted as the founda-
tional model describing partner search between two groups, particularly in labor econom-
ics. This framework allows for analyzing the resulting sorting and matching patterns. For
example, they have been used in analyses of labor markets, such as firms and workers or
firms and CEOs (Gabaix and Landier, 2008; Eeckhout, 2018), as well as in family eco-
nomics in the context of marriage markets (Chiappori, 2017). Constraints like regional
restrictions have not traditionally been considered in the transferable utility matching
models, largely because the applications focused on markets where distributional con-
cerns were absent. Incorporating constraints in the model is not unnatural when such
concerns are present, and addressing this point is a key contribution of this study.

Next, we highlight our contribution from the viewpoint of the structural estimation
of matching marekts. The structural analysis of matching markets is widely accepted in
many fields of economics: in addition to the above-mentioned labor economics, industrial
organization also adopts a type of matching model to describe the trade network (Fox,
2018; Fox, Yang and Hsu, 2018). Notable methodological contributions are developed in
Galichon and Salanié (2021a): the nonparametric identification result of the social surplus
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function in a transferable utility matching market, which is robust to distributional as-
sumptions on unobserved heterogeneity, along with the corresponding estimators2. This
study builds on the general framework of Galichon and Salanié (2021a), proposing an ex-
tended model that accommodates regional constraints. Our framework is thus applicable
without assuming a specific distributional form for unobserved heterogeneity terms. Fur-
thermore, diverging from Galichon and Salanié (2021a), we propose a formal estimation
strategy that exploits a measurement of the transfer to quantify the parameter values in
a monetary unit.

Lastly, we mention Agarwal (2015) as the closest research to this study. Agarwal
(2015) takes a different approach to analyzing the doctor-hospital matching market in
the U.S. National Residency Matching Program (NRMP), where a centralized mechanism
determines the matchings and salaries are determined almost exogenously. While Agarwal
(2015) addresses the endogeneity of salaries using a control function approach, our study
fully models the salary determination process. This difference reflects the variation in
market environments: in Japan, the concentration in urban areas presents more severe
issues, and salaries are used as a tool to attract more candidates. Notably, our approach
allows for a more flexible preference structure than the vertical preferences assumed on
the hospital side to identify the model of Agarwal (2015). Our empirical results support
the presence of horizontal heterogeneities in the preferences of the hospital side.

Layout The rest of this paper is organized as follows. Section 1.1 provides the insti-
tutional background of the JRMP. Section 2 details the data sources, key variables, and
descriptive statistics. Section 3 introduces the theoretical model, extending the classic
matching with a transferable utility framework to incorporate regional caps and floors as
policy constraints. Section 4 presents the main theoretical results, including the design
of optimal taxation policies under regional constraints. Section 5 outlines the empirical
strategy, describing the estimation of structural parameters and the construction of mo-
ment conditions. Section 6 provides the results of our estimation. Section 7 conducts
counterfactual analyses to evaluate the efficiency of the current policy and the potential
impact of alternative policies.

2Galichon and Salanié (2021a) is also distinct compared to other methodologies dependent on the
distributional assumptions, such as the minimum score estimator proposed by Fox (2010, 2017); Fox and
Bajari (2013) and the maximum likelihood estimator of Choo and Siow (2006).
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1.1 Institutional Background of the JRMP

Established in 2004, the Japan Residency Matching Program (JRMP) is modeled after
the National Resident Matching Program in the United States. The JRMP uses a deferred
acceptance algorithm to match medical students seeking clinical training with hospitals
offering residency programs based on mutual preferences. Typically, sixth-year medical
students who plan to take the national exam participate in the program.3

The JRMP process is structured as follows: Students and hospitals must register for
the system and submit their preferences. Students have access to information such as
hospital size, location, training program details, salary, and workload, and they can parti-
cipate in job fairs and visit hospitals for more details. Before submitting their preference
lists, students must take exams conducted by each hospital they wish to list. After the
initial submission of preference lists, the distribution of students’ first-choice hospitals
is disclosed once, allowing both students and hospitals to adjust their preferences be-
fore finalization. The deferred acceptance algorithm then runs to determine the matches
based on the finalized preference lists.4 Unmatched students can reach out to hospitals
with vacant slots individually or wait to participate in the matching process the following
year. In 2023, the JRMP saw the participation of 10,202 students and 1,209 hospitals
offering 10,895 positions. The algorithm successfully matched 87.9% of the students, with
64.3% securing their first-choice hospitals, 16.3% their second choice, and 9.0% their third
choice.

Although internships were not mandatory before 2004, most medical students still
undertook them, typically at hospitals affiliated with their medical schools. For example,
in 2001, 71.2% of students worked in such affiliated hospitals. These hospitals often
offered poor financial compensation, forcing many students to take part-time jobs to
cover their living expenses. Since 2004, two-year internships have become mandatory
for becoming clinicians. The government began subsidizing hospitals offering residency
programs, ensuring that residents receive sufficient salaries and eliminating the need for
part-time work.5 Consequently, an increasing number of students are now choosing to

3In Japan, students can enter a six-year medical program immediately after graduating from high
school, so sixth-year students, who are in their final year, are typically 24 to 25 years old.

4At this stage, it is nearly impossible for students or hospitals to add more options to their preference
lists. Given the (one-sided) strategy-proofness of the DA algorithm, the usefulness of this information
disclosure is questionable.

5Another primary goal of the new internship system is to introduce a rotating internship system,
allowing residents to gain a broader understanding of primary care. Before 2004, residents typically
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work in non-university hospitals, with 69.27% doing so between 2017 and 2019.6(Kitamura
and Takagi, 2006)

Many argue that the introduction of the JRMP has contributed to significant geo-
graphic imbalances in the distribution of doctors. A widely accepted opinion is that
when most doctors were affiliated with universities, the universities had strong control
over doctor placements and could send some of them to underserved areas. However,
under the JRMP, more doctors complete their internships in urban and non-university
hospitals, loosening the connections between doctors and universities and preventing uni-
versities from functioning as an adjustment mechanism.7 To compensate for the lack of
residents as a labor force, university hospitals often need to request doctors working at
other related non-university hospitals to return, further reducing the number of doctors
in underserved areas.8 Additionally, hospitals participating in the JRMP are required
to have enough doctors to supervise residents, leading to a concentration of doctors in
certain hospitals. (Endo, 2019)

To address distributional imbalances, the JRMP began implementing regional caps in
2010.9 The regional caps are set through a systematic process: first, the total number of
positions in the country is determined by multiplying the total number of medical students
by a constant. This constant was approximately 1.22 in 2015, but the government plans
to reduce it to 1.05 by 2025. Once the total number of positions is determined, they
are allocated to each prefecture based on variables such as population, medical school
capacity, current number of doctors, and geographic factors like the number of doctors per

concentrated on their specific areas of interest without receiving comprehensive training in other fields.
6The popularity of non-university hospitals may be attributed to better working environment, greater

opportunities for practical experience with common diseases, and increased flexibility in location.
7Due to the competitive nature of medical schools, many students from urban areas opt to attend

medical schools in rural regions. These students are more likely to choose to work in hospitals near their
home areas.

8University hospitals want to have many medical staff members for both clinical and research purposes,
but financial constraints make this difficult. Therefore, they send staff to non-university hospitals on
temporary assignments, with the non-university hospitals paying their salaries. Non-university hospitals
accept this arrangement because it provides a stable supply of doctors, or they request such arrange-
ments due to doctor shortages. Although interns lack sufficient knowledge and skills to be effective in
underserved areas, they can handle some tasks at university hospitals, reducing the workload of mid-level
doctors and enabling these doctors to be dispatched elsewhere. Consequently, a decrease in the number
of residents restricts the dispatch of mid-level doctors.

9Another possible approach could be to simply increase the number of doctors. However, the Japanese
government opted not to pursue this strategy and instead set caps on the total number of medical students
nationwide. This decision was based on the expectation that Japan’s population will decrease in the
coming years, potentially leading to an oversupply of doctors. An oversupply could result in physician-
induced demand and increased public expenditure on health insurance.
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unit area and the population of isolated islands. The allocation rule is designed to favor
underserved areas, with positions in urban areas being reduced more significantly. The
rationale behind these caps is that by tightening the total capacity and limiting positions
in urban areas, more students will secure placements in rural regions and remain there
after their internships.

2 Data

Our analysis covers the four years of matching results generated by the JRMP from 2016
to 2019. To estimate our model, we need three key elements: the matching patterns
between medical schools and hospitals, the characteristics of these institutions relevant
to the preferences of medical students and hospitals, and the salaries paid to residents
during their internships. We begin by explaining the data sources and then present the
descriptive statistics in Section 2.1.

The matching patterns between medical schools and hospitals (i.e., the number of
matches between any given pair) are derived from the “Physician Registration Report,”
which includes information such as doctors’ registration numbers, workplace postal codes,
and the universities from which they graduated. This data allows us to determine the
annual number of matches between specific medical schools and hospitals.

We obtained the characteristics of hospitals from the JRMP website, which provides
details such as hospital names, program offerings, and capacity. For the characteristics
of medical schools, we used the national exam pass rate and whether the university is
public, based on publicly available information from hospital websites. Additionally, to
measure the expected ability of graduates from a medical school, we used the T score of
the entrance exam.10 T scores are widely recognized as an indicator of university entrance
exam difficulty in Japan, with higher scores indicating more challenging universities. We
used the most recent T scores available for our estimation.11

Finally, we gathered salary data by crawling hospital websites. Due to limited data
availability, we used the most recent salary information rather than data from 2016 to
2019, assuming that salary levels remained constant during this period. We also collected

10The T scores of universities are published by cram schools. These scores are calculated using data
from practice exams administered by the cram schools, which gather information on students’ actual
university entrance exam results. The T scores reflect the relationship between students’ practice exam
performance and their success in university entrance exams.

11The data source is https://www.keinet.ne.jp/university/ranking/.
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Table 1. Environments and Outcomes of JRMP

2017 2018 2019

Panel A: Doctor side
Number of schools 78 78 78
Number of students 9830 9916 9932
Number of matched students 8530 8369 8634
Number of unmatched students 1300 1547 1298
Unmatch rate (%) 13.22 18.48 15.03

Panel B: Hospital side
Number of hospitals 1025 1025 1022
Number of total seats 11716 11468 11730
Number of matched seats 8530 8369 8634
Number of unmatched seats 3186 3099 3096
Unmatch rate (%) 27.19 27.02 26.39
Number of excess seats 1886 1551 1798
Excess rate (%) 16.01 13.52 15.33

Panel C: Monthly salary (1, 000 JPY)
Avg. 386.4 386.4 386.1
Std. 99.5 99.6 99.4
Min 180.0 180.0 180.0
Max 855.0 855.0 855.0

additional hospital-related information, such as location, number of beds, and emergency
transport cases.

2.1 Descriptive Statistics

Table 1 summarizes the environment and the outcomes of JRMP for the years 2017, 2018,
and 2019. Since our estimation uses the matching patterns from the final year as one of
the covariates, we focus on these three years. Panel A and Panel B in Table 1 show the
results of JRMP. While the environment, including the total number of medical students
and the available seats, and their ratios, exhibits minor yearly variations, the matching
outcomes—such as the number of matches, unmatches, and the unmatch rate—fluctuate
over this period. As noted in Section 1.1, the unmatch rate had been increasing before
this period due to the tightening caps in urban areas. Although the unmatch rate remains
high, our data cover a relatively stationary market.

Despite the presence of unoccupied seats overall, as shown in Table 1, the fulfillment
rate by prefecture, defined as the ratio of the number of matches to the total number of
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(a) Fulfillment Rates (b) Population Density

Figure 1. Fulfillment Rate and Population Density

positions in each prefecture, exhibits substantial regional variation. Figure 1a displays
a choropleth map of fulfillment rates, while Figure 1b illustrates population densities
by prefecture in 2019. As noted in Section 1.1, these figures suggest that rural regions,
characterized by lower population density, are less popular and suffer lower fulfillment
rates than urban areas.

Panel C of Table 1 reports significant variation in the salaries of medical interns across
Japan. For example, in 2017, the average annual salary was approximately $31,714, with
a standard deviation of $8,166.12 For comparison, Table 1 of Agarwal (2015) reports
that the mean salary for similar medical interns in the United States was $47,331, with a
standard deviation of $2,953. While average salaries are higher in the U.S., the standard
deviation in Japan is 2.77 times larger, indicating greater salary dispersion.

Table 2 presents descriptive statistics for the covariates used to parameterize social
surplus and the utility of medical students and hospitals. The T score and graduation
exam pass rate of medical schools serve as proxies for student ability, with higher values
being more desirable to hospitals. Public medical schools exhibit higher average T scores,
indicating that graduation from a public school signals greater ability. This difference is
statistically significant. On the hospital side, we define an indicator for urban hospitals
located in the six prefectures with officially set caps on the number of matches in the
JRMP: Tokyo, Kanagawa, Aichi, Kyoto, Osaka, and Fukuoka. Hospital size is proxied
by the number of beds, with Table 2 showing that university hospitals and those in urban

12The conversion from yen to dollars was based on the exchange rate as of August 30, 2024.
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Table 2. Summary Statistics of Covariates

Count Mean Std Min Max

T score
Private University 27 64.96 2.17 62 72
Public University 51 66.38 2.66 63 74

Exam pass rate
Private University 27 0.93 0.05 0.79 1.00
Public University 51 0.93 0.03 0.82 1.00

Number of Beds
Non University hospital 911 411.08 147.73 36 1097
University hospital 121 626.74 272.77 295 1379
Rural Hospital 684 417.99 155.92 36 1195
Urban hospital 348 472.48 217.84 38 1379

areas tend to be larger.
Public medical schools in Japan play a pivotal role in maintaining standardized med-

ical services nationwide, with a significant proportion of their graduates continuing to
nearby hospitals for internships. Figure 2 illustrates the matching pattern between hos-
pitals and medical schools in 2017, where each cell represents a pairing, with black cells
indicating at least one match. Hospitals are indexed according to the official prefectural
index set by the Japanese government, ordered by location, and within each prefecture,
by latitude. Medical schools are first divided into public and private groups, with the
same ordering method applied within each group.

The upper half of Figure 2 (up to index 50) represents the matchings of public schools,
while the lower half corresponds to private schools. Both public and private schools
generally tend to match with nearby hospitals; however, this tendency is more pronounced
for public schools. Consequently, public school graduates are, on average, less likely to
match with urban hospitals despite the higher average quality of public universities.

2.2 Endogeneity of Salary

The matching patterns observed above cannot be attributed solely to the geographic
preferences of hospitals and schools; another plausible explanation is that rural hospitals
offer more attractive conditions to draw students from public universities. In this section,
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Figure 2. Binarized Matching Patterns between All Schools and Hospitals in 2017
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Table 3. Sorting between Residents and Programs from Program Viewpoint

(1) (2) (3)
Public T score Pass rate

ln(Beds) 0.0665*** 7.060*** 0.0990***
(0.0225) (1.242) (0.0171)

ln(Wage) 0.00233 -3.459* -0.0376
(0.0364) (1.974) (0.0276)

University hospital -0.282*** -1.704 -0.0150
(0.0343) (1.116) (0.0155)

Urban -0.110*** 3.399*** 0.0435***
(0.0178) (0.863) (0.0120)

N 3096 3096 3096
FE

√ √ √

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

we examine how salary functions as a compensating differential to attract more applic-
ants to rural areas and explore evidence suggesting that salary should be treated as an
endogenous variable in our model.

We conduct a series of regressions to investigate (i) which types of hospitals attract
better students and (ii) which types of students are matched with better hospitals, sim-
ilar to Agarwal (2015). Due to the unavailability of individual matching data, we first
calculate the weighted averages of the characteristics of matched partners within each
medical school and hospital. These aggregated characteristics are then regressed on the
covariates of the medical schools and hospitals.

Table 3 presents the regression results on sorting from the perspective of hospitals.
Column (1) shows that urban hospitals tend to have more students from private schools,
which are generally of lower quality compared to public schools. Meanwhile, columns (2)
and (3) indicate that hospitals in urban areas and those with a larger number of beds
are more likely to attract students from higher-quality schools, as measured by T scores
and pass rates. Table 4 presents the regression results from the perspective of medical
schools. Columns (1), (2), and (4) indicate that students from public schools are more
likely to be matched with smaller hospitals in rural areas, where salaries tend to be higher
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Table 4. Sorting between Residents and Programs from Residents Viewpoint

(1) (2) (3) (4)
Beds Univ. Hospital Urban Hospital ln Wage

Public University -153.1*** -0.309*** -0.302*** 0.136***
(17.60) (0.0334) (0.0438) (0.0250)

T score 2.935 -0.0145** 0.0427*** -0.00932**
(3.056) (0.00685) (0.00888) (0.00377)

Exam Pass Rate -47.03 0.0945 0.0256 0.0563
(58.28) (0.149) (0.114) (0.0724)

N 234 234 234 234
FE

√ √ √ √

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

than in urban hospitals.
The matching patterns do not fully align with positive assortative matching, as high-

quality public schools play a unique role in providing medical residents to local hospitals.
These observations support the hypothesis that rural hospitals offer higher salaries to
attract more applicants, particularly those from nearby public universities. Therefore,
when simulating outcomes of this matching market as part of the counterfactual analysis,
it is essential to account for how transfers between hospitals and matched residents are
determined in the counterfactual equilibrium. This consideration is a reason why we do
not adopt a non-transferable utility matching model for the following analysis, as it treats
transfers as exogenous elements.

3 Model

Stable outcome under a taxation policy We consider a two-sided matching market.
Let I denote the set of doctors (medical students) and J the set of job slots owned by
hospitals.13 Each doctor i ∈ I can be matched with at most one slot j ∈ J , and each slot
can accommodate at most one doctor. If a doctor i is unmatched, they are paired with

13Here, j ∈ J refers to a job slot within a hospital. Each hospital can have multiple job slots, and aims
to maximize the aggregate payoffs from these slots, implying that hospitals’ preferences are responsive
(Roth and Sotomayor, 1990).
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an outside option j0. Similarly, an unmatched slot j is paired with an outside option i0.
A matching is represented by a 0-1 matrix d = (dij)i∈I,j∈J , where dij = 1 if and only if
doctor i is matched with slot j. A matching d is feasible if each doctor is matched to
exactly one slot or the outside option, and each slot is matched to exactly one doctor or
the outside option:

∑
j∈J dij ≤ 1 for all i ∈ I, and

∑
i∈I dij ≤ 1 for all j ∈ J .

There is a policymaker who faces an additional condition called regional constraints.
There are L regions, denoted by Z = {z1, z2, . . . , zL}, with each job slot j assigned to one
region. Additionally, we define a special region z0 that contains only the outside option
j0. With a slight abuse of notation, let z : J ∪ {j0} → Z ∪ {z0} be the mapping where
z(j) indicates the unique region to which job slot j belongs. Each region z has a cap and
a floor, oz ∈ R+ and ōz ∈ R+ ∪ {∞}, respectively. We say a feasible matching d satisfies
regional constraints if it respects the caps and the floors:

∑
i∈I
∑

j∈z dij ∈ [oz, ōz] for each
z ∈ Z. Throughout the paper, we assume that there exists at least one feasible matching
that satisfies regional constraints.

Agents form a stable outcome à la Shapley and Shubik (1971). Without policy inter-
vention, the realized matching may not meet the regional constraints. The policymaker
can implement a taxation policy that influences the split of the joint surplus among
agents to satisfy the regional constraints. When a doctor i and a slot j are matched,
they generate an (individual-level) net joint surplus Φij ∈ R. The tax wz ∈ R is imposed
on each match (i, j) in region z with negative taxes being interpreted as subsidies. We
assume wz0 = 0, i.e., no tax is imposed on the outside option. With taxation policy
w, each matched pair divides the gross joint surplus Φij − wz(j) instead of the net joint
surplus. 14 The stable outcome under a taxation policy is defined as follows:

Definition 1 (Stable outcome). Given the matching market (I, J, Z, z,Φ),15 a profile
(d, (u, v)) of feasible matching d and equilibrium payoffs (u, v) forms a stable outcome
under taxation policy w if it satisfies:

1. Individual rationality: For all i ∈ I, ui ≥ Φi,j0, with equality if i is unmatched. For
all j ∈ J, vj ≥ Φi0,j, with equality if j is unmatched.

14In principal, the policymaker may want to impose different amounts of taxes on distinct pairs within
the same region. Although we exclude such possibilities in the definition of taxation policy, we can show
that such a restriction is harmless in terms of social welfare: there is a welfare-maximizing taxation
policy that imposes the same amount of tax on all the pairs in the same region.

15The symbol z denotes the mapping from job slots to regions.
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2. No blocking pairs: For all i ∈ I and j ∈ J , ui + vj ≥ Φij − wz(j), with equality if
dij = 1.

We say d is a stable matching if there exists (u, v) such that (d, (u, v)) forms a stable
outcome.

Unobserved heterogeneity Let X = {x1, x2, . . . , xN} represent the finite set of ob-
servable characteristics, or types, of doctors. Each doctor i ∈ I has a type x(i) ∈ X.
Similarly, let Y = {y1, y2, . . . , yM} represent the finite set of observable characteristics of
job slots, with each slot j ∈ J having a type y(j) ∈ Y . Although agents with the same
type are indistinguishable to the policymaker, there can be unobservable heterogeneity:
doctors of the same type x or job slots of the same type y may generate different joint
surpluses when matched. For convenience, we denote i ∈ x if x(i) = x and j ∈ y if
y(j) = y. We define x0 and y0 as special types representing the outside options i0 and
j0, respectively, and let X0 = X ∪ {x0} and Y0 = Y ∪ {y0} include these outside options.
The set of all type pairs is denoted by T = X0 × Y0 \ {(x0, y0)}. We assume each job slot
type y ∈ Y belongs to a unique region, denoted by z(y) ∈ Z. Let nx be the number of
doctors with type x, and my be the number of job slots with type y.

Let µxy denote the number of matches between type-x doctors and type-y job slots,
defined as µxy =

∑
i∈x
∑

j∈y dij. An aggregate-level matching µ = (µxy)x∈X,y∈Y is said to
be feasible if it satisfies the population constraints

∑
y µxy = nx and

∑
x µxy = my for each

x and y. Furthermore, we say µ satisfies regional constraints if
∑

y∈z
∑

x∈X µxy ∈ [oz, ōz]

for each z ∈ Z.

Remark 1. (Interpretation of joint surpluses) The joint surplus includes not only the
revenue generated by the match but also other potential gains such as experience and
knowledge. Thus, Φij represents the value of all such potential gains, measured in a
numeraire.

Remark 2. (Validity of stable outcome) It is reasonable to assume that participants form a
stable outcome in various matching markets such as in frictionless decentralized matching
markets (e.g., certain labor markets or marriage markets.16) Additionally, we can show
that agents may form a stable outcome in a game where (i) hospitals first set wages,
(ii) agents submit their preference lists after observing wages, and (iii) the matching is

16See, for example, Roth and Sotomayor (1990) and Chiappori (2017) for textbook references.
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determined by the deferred acceptance algorithm, which is a good approximation of the
JRMP (see Appendix A.5 for more details.)

Remark 3. (Interpretation of types and regions) Types y ∈ Y and regions z ∈ Z can
be interpreted in various ways. For example, in our application, a type y may corres-
pond to a hospital, and a region z may correspond to a district (e.g., a prefecture). In
other contexts, a type could represent a subcategory of occupation (e.g., registered nurse,
physician assistant), and a region could represent a broader occupational category (e.g.,
healthcare).

4 Theoretical Results

Discrete choice representation We here review a set of conditions and results,
developed by Galichon and Salanié (2021a), that connect the individual-level objects
((Φij)ij, (dij)ij, (ui)i, (vj)j) introduced in Section 3 to the aggregate-level objects we de-
velop in this section.

For a pair (i, j) with i ∈ x and j ∈ y, we assume the individual-level joint surplus Φij

can be decomposed into the sum of the aggregate-level joint surplus Φxy and independent
mean-zero error terms εiy and ηxj. 17 For each x and i ∈ x, error term (εiy)y∈Y0 is
drawn from the distribution Px ∈ ∆(R|Y |+1). Similarly, for each y and j ∈ y, error term
(ηxj)x∈X0 is drawn from distribution Qy ∈ ∆(R|X|+1).

Assumption 1 (Independence). The error terms are independent across all i and j and
of mean-zero. 18

Assumption 2 (Additive Separability). There is a matrix (Φxy)(x,y)∈T such that (i)
Φij = Φxy + εiy + ηxj for each x ∈ X, y ∈ Y , i ∈ x, and j ∈ y, and (ii) Φi,y0 = εi,y0,
Φx0,j = ηx0,j for each x ∈ X and y ∈ Y .

We define aggregate-level utilities Uxy and Vxy, which represent the equilibrium payoffs
dependent solely on types, as follows: for each x and y, define

Uxy := min
i : x(i)=x

{ui − εiy}, Vxy := min
j : y(j)=y

{vj − ηjx}

17Under Assumption 1 and 2, Φxy is the average joint surplus conditional on i ∈ x and j ∈ y.
18The mean-zero assumption here is without loss of generality. If not, we can always demean the error

terms and redefine them.
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and Ux,y0 = Vx0,y := 0. The following lemma argues that the matching market can be
seen as a bilateral discrete choice problem.

Lemma 1 (Galichon and Salanié (2021a)). Let (u, v) be a payoff profile in a stable
outcome. Under Assumption 2, for any doctor i ∈ I and any slot j ∈ J , we have

ui = max
y∈Y0

{
Ux(i),y + εiy

}
, vj = max

x∈X0

{
Vx,y(j) + ηxj

}
.

Proof. See Appendix A.1.

By Lemma 1, the social welfare, defined as the sum of the equilibrium payoffs, on the
doctor side can be written as

∑
i∈I ui =

∑
x∈X nx · 1

nx

∑
i∈x maxy∈Y0 {Uxy + εiy} . When

nx is sufficiently large, the term 1
nx

∑
i∈x maxy∈Y0 {Uxy + εiy} can be approximated by

Eεi∼Px [maxy∈Y0 {Uxy + εiy}]. We will assume from now on that this large market limit is
a good approximation, so the social welfare on the doctor side becomes

G(U) :=
∑
x∈X

nx E
εi∼Px

[
max
y∈Y0

{Uxy + εiy}
]
.

Similarly, when my is sufficiently large for each y, the welfare on the hospital side is
approximated by

H(V ) :=
∑
y∈Y

my E
ηj∼Qy

[
max
x∈X0

{Vxy + ηxj}
]
.

Under the assumption that the CDFs of the error terms are continuously differentiable,
we have (the Williams-Daly-Zachary theorem (McFadden, 1980)):

∂G

∂Uxy

(U) =
∂

∂Uxy
E

εi∼Px

[
max
y∈Y0

{Uxy + εiy}
]
= Pr(i chooses y | i ∈ x).

When nx is sufficiently large, nx Pr(i chooses y | i ∈ x) is a good approximation of µxy.

Assumption 3 (Large Market Approximation). For each x ∈ X, we approximate

Eεi∼Px [maxy∈Y0 {Uxy + εiy}] as 1
nx

∑
i∈x maxy∈Y0 {Uxy + εiy}. We also approximate µxy

as nx Pr(i chooses type-y slot | i ∈ x). Similar conditions are assumed for type y ∈ Y .

Assumption 4 (Smooth Distribution). For each x, y, CDF’s Px and Qy are continuously
differentiable.
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Policymaker’s problem A tuple M := (X,Y, n,m,Z, z,Φ, P,Q) characterizes an
aggregate-level matching market, where n := (nx)x, m := (my)y, Φ = (Φxy)xy, P = (Px)x,
and Q = (Qy)y. Given M, the policymaker aims to (i) compute the optimal taxation
policy w that maximizes social welfare while respecting regional constraints, and (ii) com-
pute the matching and social welfare for different taxation policies. For these goals, we
will construct optimization problems that only requires knowledge of the aggregate-level
surplus (Φxy)x,y. To this end, we need an additional technical assumption on the error
term distributions:

Assumption 5 (Full support). supp(Px) = R|Y0| and supp(Qy) = R|X0| for each x and
y.

This assumption guarantees that G and H are strictly convex,19 so there is a one-to-
one correspondence between an aggregate-level matching µ and aggregate-level utilities U
(and similarly between µ and V .)20 The optimization problem is now defined as follows:

(P)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
µ≥0

∑
(x,y)∈T

µxyΦxy + E(µ)

subject to
∑
y∈Y0

µxy = nx ∀x ∈ X,

∑
x∈X0

µxy = my ∀y ∈ Y,

oz ≤
∑
y∈z

∑
x∈X

µxy ≤ ōz ∀z ∈ Z,

where E(µ) := −G∗(µ)−H∗(µ), and G∗ and H∗ are the Legendre-Fenchel transform of G
and H, respectively.21 We can show that (P) is a concave programming that maximizes
social welfare subject to regional constraints (see Appendix A.4.) Its dual problem is

(D)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
U,V,w̄z ,wz

G(U) +H(V ) +
∑
z∈Z

ōzw̄z −
∑
z∈Z

ozwz

subject to Uxy + Vxy ≥ Φxy − w̄z(y) + wz(y) ∀(x, y) ∈ T,

w̄z ≥ 0, wz ≥ 0 ∀z ∈ Z.

19 See Appendix A.3 for the proof.
20If G and H strictly convex, the Legendgre transform of G and H, denoted by G∗ and H∗, are differ-

entiable (Proposition D.14 of Galichon (2018).) Then, we have µ ∈ ∂G
∂U (U) iff U ∈ ∂G∗

∂µ (µ) (Proposition
D.13 of Galichon (2018).)

21G and H are proper convex functions, so their Legendre-Fenchel transforms are well-defined.

19



The primal problem (P) has the optimal solution since its objective function is continuous
and its feasible set is compact and non-empty. Due to strong duality,22 the dual problem
(D) also has the optimal value, which coincides with that of (P). Moreover, (P) and
(D) have unique solutions (see Appendix A.2.) The following theorem claims that, given
regional constraints (ōz, oz)z, the optimal taxation policy w and a tuple of aggregate-level
matching and utilities (µ, U, V ) are characterized by the solutions to (P) and (D).

Theorem 1. Assume that Assumptions 1-5 are satisfied. Fix any aggregate-level matching
market M. Suppose that µ and (U, V, w̄, w) are the solutions to (P) and (D), respectively.

1. Let wz := 1{w̄z > 0}w̄z −1{wz > 0}wz for each z. Then, w is the optimal taxation
policy, and (µ, U, V ) are the corresponding aggregate-level matching and utilities.

2. Suppose that w is the optimal taxation policy. Then, we have w̄z := 1{wz > 0}wz

and wz := −1{wz < 0}wz.

Proof. See Appendix A.3.

We can also compute a tuple of aggregate-level matching and utilities (µ, U, V ) realized
under taxation policy w for any w by solving a pair of optimization problems. The proof
of the following proposition is similar to the one for Theorem 1, and so is omitted.

Proposition 1. Assume that Assumptions 1-5 are satisfied. Fix any aggregate-level
matching market M. For any taxation policy w, the aggregate-level matching and utilities
realized under w, denoted by (µ(w), U(w), V (w)), is characterized by the solution to (Pw)

and (Dw), defined as follows:

(Pw)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
µ≥0

∑
(x,y)∈T

µxy

(
Φxy − wz(y)

)
+ E(µ)

subject to
∑
y∈Y0

µxy = nx ∀x ∈ X,

∑
x∈X0

µxy = my ∀y ∈ Y.

22The constraints of the primal problem satisfy the weak Slater’s condition (all functions are affine in
µ.)
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(Dw)

∣∣∣∣∣∣∣∣∣∣∣
minimize

U,V
G(U) +H(V )

subject to Uxy + Vxy ≥ Φxy − wz(y) ∀(x, y) ∈ T

For taxation policy w, tuple (µ(w), U(w), V (w)) defined in Proposition 1 is called an
aggregate equilibrium (AE) under w. It is called the efficient aggregate equilibrium (EAE)
when the corresponding w is the optimal taxation policy.

5 Empirical Strategy

We begin by mapping the primitives and equilibrium objects in the model described in
Section 3 and 4 to their empirical counterparts in the doctor-hospital matching market.
We then introduce the concept of transfers between matched pairs within the matching
market. To define these transfers, we impose an additional structure on the composi-
tion of the net joint surplus. Finally, we outline our empirical strategy to estimate the
structural parameters. Our estimation consists of two steps: the first step, detailed in
Section 5.2.1, follows Galichon and Salanié (2021a) to identify aggregate-level utilities
from the observed aggregate matching; the second step, described in Section 5.2.2, util-
izes a moment condition that links the observed salary to the model-induced objects to
estimate the parameter values.

We use the following notation: a doctor is denoted by i, and a job slot is denoted by
j. Each doctor belongs to a medical school, and each slot is offered by a hospital, with s
representing a school and h representing a hospital. We consider s and h as observable
types of doctors and slots, using s(i) to denote the medical school to which doctor i
belongs, and h(j) to denote the hospital offering slot j. The matching market operates
over T ∈ N periods, with t denoting each observation period. Let Z denote the set of
regions and z(h) denote the region to which hospital h belongs, assuming z(h) remains
constant over time. The aggregate-level joint surplus at time t is denoted by Φsht. The
unobserved part (error term) of doctor i’s preference for hospital h is denoted by εiht,
while the unobserved part of slot j’s preference for school s is denoted by ηsjt.23 The

23This notation can be confusing as slots themselves do not have preferences. We interpret this as
follows: the admission office is composed of members with varying tastes for schools, such as a strong
preference for the school from which they graduated. ηsjt reflects these differences in the committee
members’ preferences.
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net joint surplus satisfies the equality: Φijt = Φs(i)h(j)t + εih(j)t + ηs(i)jt for each i ∈ I,
j ∈ J , and t ∈ [T ].24 The matching (dijt)i,j,t is not observable. Instead, the available
data comprises the aggregate-level matching (µsht)s,h,t, which is the number of matches
between medical school s and hospital h at time t.

We consider the observed number of matches in a year composes the aggregate equi-
libirum under no tax of the matching market of the year. In other words, we do not
consider the current matching outcome is affected by any monetary intervention aimed
for satisfying regional constraints.25 Hence, except the econometric treatment of the
transfer among the pair, our empirical strategy follows Galichon and Salanié (2021a).

5.1 Transfer

To define a model object corresponding to the observed salary, we impose an additional
structure on the net joint surplus. The base utility of i when matched with j at time
t is the utility felt by i when matching with j net of transfer, and is denote by Ubase

ijt .
Similarly, the base utility of j when matched with i at time t is denoted by V base

ijt . We
assume that the net joint surplus is the sum of the base utilities of a doctor and a slot
forming the match.

Assumption 6. Φijt = Ubase
ijt + V base

ijt .

Furthermore, in accordance with additive separability (Assumption 2), we re-interpret
the i.i.d. error terms as the unobserved taste shocks of the agents on both sides of the
market. In other words, we assume the following utility structure: define Ubase

sht := Ubase
ijt −

εiht and V base
sht := V base

ijt − ηsjt, so we have

Ubase
ijt = Ubase

sht + εiht, V base
ijt = V base

sht + ηsjt.

We call Ubase
sht and V base

sht by aggregate-level base utility: they are a part of base util-
ities which is determined by the observable characteristics. As a direct implication of
Assumption 2, 6 and (5.1), we have Φsht = Ubase

sht + V base
sht . Note that the aggregate-level

base utility Ubase
sht can be different from the aggregate-level utility Usht introduced in (4).

24[T ] := {1, 2, . . . , T − 1, T}.
25In Appendix C.1, we check if this assumption is valid in our data. We estimate our model under

assumption that the matching outcome composes the efficient aggregate equilibrium under a regional
constraint. The estimated value of tax levied does not increase whereas the regional constraint set by
the policymaker is gradually tightened. This result indicates that “implicit” taxation is not put in the
current market.
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We define an individual level transfer. Fix any period t. Consider a matched pair
(i, j) with h(j) = h and z(h(j)) = z for some h and z. We define individual-level transfer
from hospital h to doctor i, denoted by τiht, as follows:

τiht := uit −
(
Ubase
sht + εiht

)
.

In equilibrium, doctor i enjoys equilibrium payoff uit, which could be different from Ubase
ijt .

We interpret the difference between equilibrium payoff and base utility as the individual-
level transfer from the hospital side to the doctor side.

Now we define an aggregate-level transfer as the average of the individual-level transfer
in a hospital h and denote it by ιht:

ιht :=
1

|D(h)t|
∑

i∈D(h)t

τiht,

where D(h)t is the set of doctors matched with any slot of hospital h at time t, We
can show the following identities: the aggregate-level transfer from a hospital is equal to
the weighted average of the gap between aggregate-level utility and aggregate-level base
utility. We use these identities as moment conditions to identify the aggregate-level base
utility.

Proposition 2.

ιht =
∑
s

ωsht

(
Usht − Ubase

sht

)
, ιht =

∑
s

ωsht

(
V base
sht − Vsht

)
where ωsht =

µsht∑
s′ µs′ht

.

5.2 Estimation

Based on the observable characteristics of s and h, we have a set of variables related to
the preferences: we use XU,base

sht as the variables for Ubase
sht , and XV,base

sht as the variables for
V base
sht . We assume linear structure on both of the preferences: Ubase

sht = XU,base′
sht βU , V

base
sht =

XV,base′
sht βV . Our parameters of interest are βU and βV . We use θ to indicate the vector of

these parameters: θ := (βU , βV ).
Our estimation consists of the following two steps:

1. Estimate the aggregate-level utilities Usht and Vsht for every t, and then
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2. Estimate θ using the estimated aggregate-level utilities and the observed salaries.

5.2.1 First step

Despite the nonparametric identification results obtained in Galichon and Salanié (2021a),
we estimate the parametrized version of the aggregate-level utilities. This is because some
pairs of school and hospital have zero matches in practice. Hence, in the first step, we use
the moment matching estimator proposed in Galichon and Salanié (2021a) to estimate
Usht and Vsht.26

By formulating the aggregate matching outcome µsht as a realization of a Poisson
distribution, it is possible to estimate the aggregate-level utilities by a Poisson regression
with fixed effects. For a regressor in the Poisson regressions, we make a set of polynomials
for some degree from XU

sht and XV
sht, which is denoted by Xpoly

sht . We model the aggregate-
level utilities as follows:

Usht = Xpoly′
sht βpoly

U , Vsht = Xpoly′
sht βpoly

V .

We use β̂poly
U and β̂poly

V as the estimated coefficients attached with the polynomials.
And we define the estimated aggregate-level utilities by Ûsht ≡ Xpoly′

sht β̂poly
U and V̂sht ≡

Xpoly′
sht β̂poly

V . For the details of this estimator, the readers can refer Galichon and Salanié
(2021b).

5.2.2 Second step

When we directly observe the values of ιht for all hospitals and periods, we can use (2)
to construct an estimator of θ. By inserting the estimation results in the first step, we
construct the following moment conditions for θ:

∑
s

ωsht

(
XU,base′

sht βU

)
=
∑
s

ωshtÛsht − ιht, ∀ h, t∑
s

ωsht

(
XV,base′

sht βV

)
=
∑
s

ωshtV̂sht + ιht, ∀ h, t.

In Appendix B, we show a Monte Carlo exercise adopting this approach to show how to
recover the structural parameters.

26Note that our estimation target is Usht and Vsht. The difference from the case of Galichon and
Salanié (2021a) is that we just need one side fixed effect.
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In practice, we face a measurement problem: we cannot observe the aggregate-level
transfer ιht. Instead, we can only observe the realized salaries paid by hospitals every
period. It is important to note that salary represents just one component of the total
transfer in this market, which also includes non-monetary aspects. For example, the
hospital accepts the risk of medical incidence by allowing the less-experienced medical
interns to get more practice on the job. The workload in a hospital also comprises such
unobserved transfers. Furthermore, we expect that the observed salaries correlate with
these unobservable terms, which makes the identification more demanding.

For this problem, we introduce a measurement model to connect the observed salaries
to ιht. Denoting the salary paid in a hospital h at time t by Sht, we assume that both
schools and hospitals have quasi-linear utilities with respect to monetary transfers:

ιht = γ0,U + γ1,USht + ψU
ht

−ιht = γ0,V + γ1,V Sht + ψV
ht.

γ1,V is expected to be negative because the salary is the amount of money paid to the
doctor from the hospital. ψU

ht is the unobserved transfer from the hospital to the matched
doctors, and ψV

ht is the same unobserved transfer from the doctor to the hospital.
It is likely that the unobserved transfer is correlated with the observed monetary

transfer. Hence we need some instrumental variables that have an influence just on the
salary. As such instrumental variables, we use the characteristics of the surrounding hos-
pitals as in Berry, Levinsohn and Pakes (1995). The rationale behind these instruments
is that a hospital considers the characteristics of other hospitals when setting its salary,
whereas the unobserved transfer is not known to others. In practice, we use only the
characteristics of nearby hospitals located within a 20 km radius of a given hospital as
instrumental variables for the salary, even though our model accounts for all hospitals
operating within the same market.

By combining the moment conditions and the measurement model, estimating equa-
tions are specificed as follows:

∑
s

ωshtÛsht = γ0,U + γ1,USht +
∑
s

ωsht

(
XU ′

shtβU
)
+ ψU

ht∑
s

ωshtV̂sht = γ0,V + γ1,V Sht +
∑
s

ωsht

(
XV ′

shtβV
)
+ ψV

ht.
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When we take the weighted average of every variable in XU
sht and XV

sht as independent
variables in the right hand side, the above equations are just linear equations in θ. We
estimate these linear equations using the instrumental variables discussed above.

6 Empirical Results

In this section, we show the estimation results. In Section 6.1, we show the estimation
results of our first step. In Section 6.2, we show the estimation results of our second step:
the preference parameters of both sides of the market.

6.1 First Step

From 2017 to 2019, we estimate aggregate-level utility of both sides separately. The degree
of polynomial approximating the aggregate-level utility is our tuning parameter. In this
section we show the results obtained when we choose three as the degree of polynomials
as this choice allows the more flexible functional form. In Appendix C.3, we show the
results obtained when the degree of polynomials is set to two.

Each panel in Figure 3 shows the observed matching pattern (leftmost figure), the
estimated aggregate-level social surpluses (second from the left), the estimated aggregate-
level utilities from the doctors’ side (second from the right), and the estimated aggregate-
level utilities from the hospitals’ side (rightmost figure). All figures are heatmaps in
which the vertical axis represents the indices of medical schools and the horizontal axis
represents the indices of hospitals.27 In the right three heatmaps, brighter colors indicate
higher values.

The visible pattern in the aggregate matching is well captured by our estimation.
Specifically, all the heatmaps reflect the likelihood of matches between graduates from
local public universities and nearby hospitals. As illustrated in the rightmost figures,
even from the hospitals’ perspective, graduates from closer medical schools provide higher
aggregate-level utility. 28 This pattern can be interpreted as evidence of the importance of
local knowledge: knowledge of the local medical environment is so critical that hospitals
prefer to hire local doctors.

27The way to set the index is described in Section 2.
28In contrast, Agarwal (2015) highlights that distance influences doctors’ decisions but does not account

for preference heterogeneity concerning distance on the hospital side.
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Figure 3. Aggregate Matchings, Aggregate-level Utilities and Social Surpluses.

27



6.2 Second Step

Given the estimation results in the first step, we estimate the marginal effects of cov-
ariates on the base utilities. We include the following hospital-specific variables as the
characteristics in the preference of doctor side: logarithm of number of beds of a hospital,
which acts as the measure of the size and the quality of the hospital, dummy variable of
university hospital, dummy variable of governmental hospital, dummy variable of urban
area, and dummy variable of Tokyo.29 Furthermore, we include the following pairwise
variables: logarithm of distance, logarithm of number of previous matches, and dummy
variable of affiliation relationship. As the characteristics in the preference of hospital
side, in addition to the pairwise variables, we include the following university-specific
variables: dummy variable of public university, T score of the entrance exam, dummy
variable of urban areas and dummy variable of Tokyo.

The estimation results are shown in Table 5. Column 1 and 3 correspond to the case
of OLS. Column 2 and 4 are the results obtained when we use BLP instruments for salary.
The direction of the estimated coefficients of salary are alined with the expected signs
when we use instruments. We adopt the results obtained using IV estimations as our main
estimation results. Although we cannot reject the null hypothesis that |γ1,U | = |γ1,V | at
the 5% significance level, we use different coefficients in the subsequent counterfactual
analysis rather than assume these two are equal.30

Distance between university and hospital negatively influences on both of the pref-
erences of doctors and hospitals, which is aligned with the estimation results of the
first step. Furthermore, as intuitive and anecdotally validated, the previous number of
matches have the strong influence on the preferences. The more previous matches lowers
the hurdle to apply for doctor side and the uncertainty about the quality is cleared from
the point of view of hospital side. The quality measure for both sides are also impactful.
From the doctor side, the number of beds of a hospital increases the utility obtained when
matching with a hospital. And the hospital prefers the doctor from a public university,
which is more difficult to enter. We find positive coefficients of Tokyo dummy and urban
dummy in the preference of doctor side, and positive coefficient of urban dummy on
hospital side.31

29Tokyo is by far the largest metropolitan area compared to other urban regions and holds a unique
status as the capital, which is why we included a dedicated dummy variable for it.

30The p-value of the test is 0.22.
31If there is an implicit tax on the prefectures in the urban areas, this coefficient might be under
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Table 5. Estimation Result: Preference Parameters
Degree of Polynomials = 3

(1) (2) (3) (4)
University University (IV) Hospital Hospital (IV)

Constant -5.494*** -6.724*** 1.194 1.954**
(0.187) (0.327) (0.776) (0.874)

Salary (million Yen) 0.574*** 2.527*** 0.634*** -1.780**
(0.128) (0.479) (0.146) (0.792)

Tokyo 0.0371 0.112** 0.0251 -0.0940
(0.0376) (0.0461) (0.0618) (0.0712)

urban -0.0307 0.0572* 0.205*** 0.125***
(0.0264) (0.0333) (0.0346) (0.0447)

log(Distance) -0.438*** -0.436*** -0.409*** -0.373***
(0.0150) (0.0121) (0.0194) (0.0217)

log(Previous Match) 1.245*** 1.229*** 1.551*** 1.560***
(0.0305) (0.0231) (0.0411) (0.0463)

Affiliation 0.380** 0.460*** -2.007*** -2.197***
(0.166) (0.111) (0.186) (0.205)

University hospital -0.124* -0.0127
(0.0726) (0.0788)

Govermental hospital 0.0723** 0.0132
(0.0298) (0.0330)

log(Beds) 0.744*** 0.814***
(0.0303) (0.0353)

Public university 0.287*** 0.289***
(0.0569) (0.0610)

Prestige -1.660** -2.774***
(0.734) (0.810)

N 2847 2627 2847 2627
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Table 6. University Preference Parameters (Unit: Million Yen)
Degree of Polynomials = 3

(1) (2) (3)
Coefficient of Salary = 2.527 2.412 2.519

log(Distance) -0.173∗∗∗ -0.181∗∗∗ -0.173∗∗∗
(0.03) (0.03) (0.03)

log(Previous Match) 0.486∗∗∗ 0.508∗∗∗ 0.487∗∗∗
(0.09) (0.10) (0.09)

Affiliation 0.182∗∗∗ 0.186∗∗ 0.182∗∗
(0.06) (0.06) (0.06)

University Hospital -0.005 -0.001 -0.005
(0.03) (0.03) (0.03)

Governmental Hospital 0.005 0.005 0.005
(0.01) (0.01) (0.01)

log(Beds) 0.322∗∗∗ 0.338∗∗∗ 0.324∗∗∗
(0.06) (0.06) (0.06)

N 2627 2627 2627
Urban × Year

√ √

Tokyo × Year
√

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Table 7. Hospital Preference Parameters (Unit: Million Yen)
Degree of Polynomials = 3

(1) (2) (3)
Coefficient of Salary = 1.780 1.579 1.810

log(Distance) -0.209∗ -0.236∗ -0.206∗
(0.10) (0.11) (0.10)

log(Previous Match) 0.877∗ 0.989∗ 0.862∗
(0.39) (0.44) (0.38)

Affiliation -1.235∗ -1.383∗ -1.215∗
(0.52) (0.59) (0.50)

Public University 0.163∗ 0.188∗ 0.160∗
(0.08) (0.09) (0.07)

Prestige -1.558∗ -1.764∗ -1.534∗
(0.66) (0.74) (0.64)

N 2627 2627 2627
Urban × Year

√ √

Tokyo × Year
√

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

Next, we evaluate the marginal effects in monetary unit. For this purpose, we take
the fractions of the estimated coefficients of the covariates with respect to the coefficients
of salary. The fractions and the standard errors for doctor side are shown in Table 6 and
the same ones for hospital side are shown in Table 7. In both tables, we present results
for three specifications that differ in whether they include interaction terms between year
dummies and the urban and Tokyo dummy variables. The results remain qualitatively
robust across these specifications.

For doctor side, the estimates tell that the match with a hospital which is 10% faraway
decreases the utility by from 0.017 to 0.018 million yen: this is about $108. The number
of previous matches, the affiliation relationship and the number of beds of a hospital play
the positive influences: 10% increase in the number of previous matches improves the
utility by from 0.049 to 0.051 million yes, which is about $319, the hiring by affiliated
hospitals increases the utility by from 0.182 to 0.184 million yen, which is about $1, 169,
and 10% increase in the number of beds imrpoves the utility by from 0.032 to 0.034

estimated. In Appendix C.1, we exploit the tightening regional caps to check this existence and conclude
that the current market does not face such implicit taxation.
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million yen, which is about $210.
For hospital side, distance and the previous number of matches play the similar roles:

the doctors from 10% faraway univeristy decreaes the utility of hospital by from 0.021

to 0.024 million yen, which is about $146, and 10% increase in the number of previous
matches improves the utility of hospital by from 0.086 to 0.099 million yes, which is
about from $549 to $632. The indicator of public university also has positive impact as
expected: the premium of gradtuating from a public university is from 0.160 to 0.188

million yen, which is about from $1, 022 to $1, 201.
These marginal effects of the covariates are significant even compared to the aggregate-

level utilities. In Appendix C.2, we calculate the ratio of the estimated marginal effects
of the covariates to the aggregate-level utility. For many covariates, a 10% change in the
covariates corresponds to approximately 1 ∼ 5% of the aggregate-level utility on both
sides.

7 Counterfactual Simulations

We simulate matching outcomes under several scenarios to evaluate the (in)efficiency of
cap-based regulations in the residency matching market. For such simulations, we need
to set true capacity, originally set by each hospital. This is because, as we explain in
Section 1.1, each hospital’s observed capacity is reduced so that the sum of them within
a prefecture satisfies the regional cap. Since there is no formal formula to recover the
true capacities, we set each hospital’s true capacity to the maximum number of positions
reported to the JRMP between 2015 and 2023.

We conduct two types of simulations. In Section 7.1, we compare the market outcomes
between various types of aggregate equilibria and the efficient aggregate equilibrium. This
analysis highlights the welfare losses caused by cap-based regulations and identifies their
sources as the decrease in the number of matches in urban counties. In Section 7.2, we sim-
ulate individual preferences and examine market outcomes using practical mechanisms.
This is the first empirical evaluation of the efficiency of flexible DA, and we emphasize
that monetary intervention remains crucial for addressing distributional imbalances.
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Table 8. Comparison between Aggregate-level Equilibria in 2017

Equilibrium AE AE EAE

Capacity Reduced True True
Floor No No Yes

Match rate 0.868 0.912 0.912
Doctors’ welfare 82874.9 84507.3 84514.3
Hospitals’ welfare 51788.4 56209.0 56211.2
Government’s revenue 0.0 0.0 [−10.5,−7.4]
Total welfare 134663.3 140716.3 [140715.0, 140718.1]
#(subsidized regions) 0 0 3
Average subsidy 0.000 0.000 −0.040
#(constraint violations) 0 3 0

* All welfare and revenue figures are expressed in units of 1 million JPY per month. Government revenue
is positive when taxes are imposed on doctors and hospitals and negative when subsidies are provided.
Doctors’ and hospitals’ welfare are scaled according to specification (1) in Table 6 and Table 7. We
present the bounds of the government’s net revenue, scaled by the coefficients on the doctor side and
the hospital side, respectively. The total welfare is the sum of doctors’ welfare, hospitals’ welfare, and
the government’s revenue. #(constraint violations) counts the number of prefectures violating the lower
bounds (among the 15 rural regions).

7.1 Inefficiency of cap-based regulations

We compare three scenarios. The first is the aggregate equilibrium under the artificially
reduced capacities, which is expected to approximate the actual matching outcomes. The
second scenario considers the aggregate equilibrium under the true capacity. Comparing
this with the first scenario allows us to evaluate how much welfare is lost due to the
reduction in caps in urban counties and how many floor conditions are broken. The
third scenario examines the efficient aggregate equilibrium under true capacity and floors
on rural counties. By comparing this with the second scenario, the last one clarifies
how severely the floor conditions are broken and how efficient the optimal monetary
intervention is.

For the third scenario, we define rural counties as the 15 prefectures with the lowest
observed match rates from 2017 to 2019.32 For these rural counties, floor constraints are
set so that each county has at least as many residents as in the first scenario.

The simulation results for the year of 2017 are presented in Table 8. The results of
the other years are shown in Appendix C.4 and there is no qualitative difference. All
the values except match rates, #(subsidized regions), and #(constraint violations) are

32The match rate for each county is calculated as the total number of matches in the county over the
three years divided by the sum of the county’s total capacities across those three years.
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expressed in units of 1 million JPY per month, transformed by the salary coefficients
of specification (1) in Table 6 and Table 7. Note that the government’s revenue varies
depending on the proportion of taxes and subsidies collected from doctors versus hospit-
als; therefore, we display both the upper and lower bounds in the table for the case of
EAE. The total welfare is the sum of the doctors’ welfare, the hospitals’ welfare, and the
government’s revenue: then we similarly display both the upper and lower bounds of the
value.

We observe that relaxing the caps in urban counties increases the match rate by 5
percentage points. This relaxation also leads to an estimated increase of approximately 5
billion yen in total welfare. This welfare gain comes at the cost of three rural prefectures
violating floor conditions. Nevertheless, these violations are relatively minor: as shown
in the last column, under EAE, the floor conditions are breached by no more than 18.9
million yen per month. This amount is significantly lower than the welfare gains achieved.

In order to clarify the source of the welfare gain under the EAE, Figure 4 illustrates the
difference in social welfare between EAE and AE across prefectures. Welfare improves
across all prefectures under EAE, with particularly notable gains in urban areas—the
prefectures currently subject to regional caps under the JRMP. This further suggests
that a significant portion of the inefficiency in the current JRMP policy stems from
overly strict caps on urban areas.

7.2 Evaluation of flexible deferred acceptance algorithm

We use the estimation results to simulate the matching outcomes under variants of de-
ferred acceptance algorithms, which requires simulated preference lists of both sides.
First, we explain the bechmark scenario which approximates the actual matching out-
come. We refer to this case as first scenario. Using the estimated aggregate-level
utilities, U and V , we calculate the utility of doctor i when matched with slot j as
uij = Us(i),h(j) + εi,h(j), where εi,h(j) is a random logit error. The hospital-side utility is
computed similarly. Based on these simulated utilities, we construct individual prefer-
ence lists and run the Deferred Acceptance algorithm with JRMP caps. The results are
presented in the leftmost column of Table 9. This scenario serves as a reference point for
evaluating the subsequent simulation results.

As in Section 7.1, we introduce two counterfactual scenarios: one with relaxed caps
in urban areas, which is referred to as second scenario, and another with floor conditions
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Figure 4. Difference in Welfare between EAE and AE by Prefecture

in rural areas combined with relaxed caps in urban areas, which is referred to as third
scenario. Relaxing caps and imposing floor conditions affect the aggregate-level utilit-
ies on both sides through salary adjustments. Therefore, for these simulations, we first
compute the aggregate-level utilities by solving the primal problem outlined in Section
4 based on the estimated baseline utilities. Specifically, in the second scenario, we com-
pute the aggregate equilibrium, while in the third, we compute the efficient aggregate
equilibrium under floor conditions. Using these aggregate-level utilities, we then run the
Deferred Acceptance algorithm under the true capacities using simulated preference lists.
The floors used in the thrid scenario above are set so that each prefecture has at least
as many residents as in the first scenario. We again use the same 15 prefectures as rural
areas where floor condtions are required.

The results are presented in the second and third columns of Table 9. The comparison
among the first three scenarios aligns with the findings based on aggregate equilibria
shown in Table 8. Specifically, we observe an increase in the match rate when caps in
urban areas are relaxed, and total welfare rises even under the optimal subsidy.33 These

33Even when using aggregate-level utilities from EAE, some prefectures fail to meet the floor conditions.
This occurs due to individual-level variance arising from the finite number of agents in the market.
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Table 9. Welfare Comparison of the Simulated Matchings in 2017

Scenario (1) (2) (3) (4)

Algorithm DA DA DA FDA
Capacity Reduced True True True
Floor No No Yes Yes

Match rate 0.822 0.862 0.862 0.826
Doctors’ welfare 35506.0 37695.7 37715.0 35944.2
Hospitals’ welfare 24674.7 25269.9 25264.3 25852.4
Government’s revenue 0.0 0.0 [−19.7,−13.9] 0.0
Total welfare 60180.7 62965.6 [62959.6, 62965.4] 61796.6

#regions violating lower bounds 0 3 2 1
#doctors required to meet lower bounds 0 6 2 1

#doctors matched with urban hospitals 3258 3312 3310 2588
#doctors matched with rural hospitals 1235 1329 1335 1441
Urban hospitals’ welfare 5137.0 4557.6 4544.1 4302.1
Rural hospitals’ welfare 1365.4 1343.2 1364.7 1446.3

* All welfare and revenue figures are expressed in units of 1 million JPY per month. Government revenue
is positive when taxes are imposed on doctors and hospitals and negative when subsidies are provided.
Doctors’ and hospitals’ welfare are scaled according to specification (1) in Table 6 and Table 7. We
present the bounds of the government’s net revenue, scaled by the coefficients on the doctor side and
the hospital side, respectively. The total welfare is the sum of doctors’ welfare, hospitals’ welfare, and
the government’s revenue. “#regions violating lower bounds” indicates the number of prefectures whose
matched doctor count is less than that of scenario (1). “doctors required to meet lower bounds” indicates
how many additional doctors must be matched with rural hospitals so that these prefectures exceed the
matched doctor count in scenario (1).

consitency validates the correspondence between the aggregate-level analysis and the
individual-level analysis where we use mechanism to compute the market outcome.

Finally, we apply flexible DA to this market, which is refered to as scenario 4. For
this scenatio, we use the same aggregate-level utilities as in scenario 3 and simulate the
preference lists. For the floor conditions, we use the number of matches in scenario 3. We
search the minimum reduction ratio of total capacities in urban areas under which the
floor conditions of rural prefectures are satisfied.34 The fourth column in Table 9 shows
the market outcomes of this setting: where we reduce 34% of true capacities in urban
areas. Even under this reduction, the match rate increases by 0.4 percentage point and
the total welfare increases from scenario 1. As expected, the hospital welfare and number
of matches in urban areas decreases compared to scenario 2. This decrease overwhelms
the welfare gain in rural areas and the total welfare is less than scenario 3. Given flexible

34We set the upper bounds on six urban regions (Tokyo, Kanagawa, Aichi, Kyoto, Osaka, and Fukuoka)
as α% of the total true capacities in each prefecture. We choose the maximum α that the output matching
satisfies the floor conditions in rural areas.
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DA is the latest mechanism exploiting the slots in urban areas in an efficienct way, from
this observation we conclude that cap-based regulations are not so effective in modifying
the distributional imbalances. Instead, even small amount of monetary intervention can
work to make inflows into such under represented areas.

8 Conclusion

In this study, we propose a theoretical and empirical framework to evaluate the effi-
ciency of cap-based regulations in matching markets. First, we incorporate regional con-
straints, including caps and floors, into the transferable utility matching model. Next,
we demonstrate that, under certain assumptions, the same data-generating process can
be constructed using only aggregate-level objects. This extension enables us to identify
the model primitives and simulate various market outcomes. A key innovation in our
empirical strategy is the use of salary as the observed component of the transfer between
matched agents, rather than merely as a proxy for the transfer.

The estimation results reveal that both sides of the market exhibit horizontal differ-
entiation. Specifically, the distance and the past number of matches between medical
schools and hospitals influence the preferences on both sides. Building on these findings,
we simulate a counterfactual matching market scenario in which the government removes
the current caps on matches in urban counties. Under this scenario, only three rural
prefectures fail to meet their floor conditions. Moreover, by implementing the optimal
subsidy for these rural areas, the government can still achieve welfare gains while ensuring
that the floor conditions are satisfied. Finally, we examine the effectiveness of the flexible
DA algorithm in addressing distributional imbalances. Our results indicate that while it
improves welfare in urban counties, achieving the floor conditions in rural counties re-
quires a 34% reduction in urban hospital capacities which results in huge welfare loss. We
conclude that monetary intervention by the government, combined with the flexible DA
algorithm, effectively addresses distributional imbalances and enhances overall welfare.
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A Omitted Proofs

A.1 Proof of Lemma 1

First, we will show the following lemma: 35

Lemma 2. Suppose that U and V are aggregate-level utilities given (u, v) (i.e., (4) holds).
Suppose that (d, (u, v)) is a stable outcome. Then, we have Uxy + Vxy ≥ Φxy + wz(y) with
equality when µxy > 0 for each (x, y) ∈ T .

Proof. Fix any (x, y) ∈ T . First, we show Φxy −wz(y) ≤ Uxy + Vxy. Suppose that i ∈ x is
matched with hospital j ∈ y. We have

ui = max
j∈J

{Φ̃ij − vj}

= max
y∈Y

max
j∈Y

{Φij − wz(y) − vj}

= max
y∈Y

max
j∈Y

{Φxy − wz(y) + εiy + ηxj − wz(y) − vj}

= max
y∈Y

{Φxy − wz(y) + εiy +max
j∈y

{ηxj − vj}}

= max
y∈Y

{Φxy − wz(y) + εiy − Vxy}

Thus, for any i ∈ x, we have

ui = max

{
max
y∈Y

{Φxy − wz(y) + εiy − Vxy}, εi,y0
}

= max
y∈Y0

{Φxy − wz(y) + εiy − Vxy}.

Hence,
Φxy − wz(y) ≤ ui − εiy + Vxy.

35The following proof of Lemma 2 is almost identical to the proof of Proposition 1 of Galichon and
Salanié (2021a).

40



By taking the infimum over i ∈ x, we have

Φxy − wz(y) ≤ Uxy + Vxy,

for each x ∈ X and y ∈ Y .
Next, suppose that µxy > 0. This implies that there exist i ∈ x and j ∈ y such that

dij = 1. For this pair, we have ui + vj = Φij − wz(y). Suppose toward contradiction
that Uxy + Vxy > Φxy. By (4), we have Φxy − wz(y) < ui − εiy + vj − ηxj, and thus
Φij − wz(y) < ui + vj. A contradiction.

Proof of Lemma 1. Fix any type x ∈ X and doctor i ∈ x. By definition of Uxy, we have

Uxy ≤ ui − εiy, ∀y ∈ Y0

⇐⇒ ui ≥ Uxy + εiy, ∀y ∈ Y0

⇐⇒ ui ≥ max
y∈Y0

{Uxy + εiy}.

Similarly, for any type y ∈ Y and doctor j ∈ J with type y, we have vj ≥ maxx∈X0{Vxy+
ηxj}.

We want to claim that ui ≤ maxy∈Y0{Uxy + εiy}. Suppose toward contradiction that
there exists type x ∈ X and doctor i ∈ x such that

ui > max
y∈Y0

{Uxy + εiy}.

First, consider the case where i is matched with some hospital j ∈ y. Then

Φij − wz(y) = ui + vj

>
(
max
y′∈Y0

Uxy′ + εiy′
)
+
(
max
x′∈X0

Vx′y + ηx′j

)
≥ Uxy(j) + εiy(j) + Vxy(j) + ηxj

≥ Φxy − wz(y) + εiy(j) + ηxj (∵ Lemma 2)

= Φij − wz(y).

41



A contradiction. Next, consider the case where i is unmatched. Then

ui = Φi,y0 = εi,y0 > max
y∈Y0

{Uxy + εiy} ≥ εi,y0 .

A contradiction. Therefore, we have ui ≤ maxy∈Y0{Uxy+εiy} and hence ui = maxy∈Y0{Uxy+

εiy}. We can show vj = maxx∈X0{Vxy + ηxj} in a similar manner.

A.2 Proof of the Uniqueness of the Solutions of (P) and (D)

We will show the following:

Lemma 3. If G and H are strictly convex and differentiable,36 (P) and (D) have unique
solutions for any Φ.

For (P), since G and H are differentiable (WDZ theorem), G∗ and H∗ are strictly
convex (Proposition D.14 of Galichon (2018)). Therefore, the objective function of (P)
is strictly convex in µ, which implies the uniqueness of the solution.

For (D), suppose toward a contradiction that there are two different optimal solutions
α := (U, V, w̄, w) and β := (U ′, V ′, w̄′, w′). Note that γ := 1

2
(α + β) is also feasible. If

either U ̸= U ′ or V ̸= V ′, then γ gives a strictly lower value due to the strict convexity
of G and H, which contradicts the optimality of α and β.

Suppose that U = U and V = V ′. We must have (w̄, w) ̸= (w̄′, w′). Since G is strictly
convex, we have ∂G

∂Uxy
> 0 for each (x, y). By the complementary slackness condition with

respect to Uxy, we have Uxy+Vxy = Φxy+ w̄z(y)−wz(y) and U ′
xy+V

′
xy = Φxy+ w̄

′
z(y)−w′

z(y)

for each (x, y). Since U = U ′ and V = V ′, this implies that

w̄z − wz = w̄′
z − w′

z.

for each z. Since ōz > oz, we must have w̄zwz = 0; otherwise, there exists ε > 0 such that
(U, V, ˜̄w, w̃), where ˜̄wz := w̄z−ε and w̃z := wz−ε attains a strictly lower value. Similarly,
we have w̄′

zw
′
z = 0. However, these combined with (A.2) imply that w̄ = w̄′ and w = w′:

if w̄z > 0, then wz = 0, w′
z = 0, and w̄z = w̄′

z. If wz > 0, then w̄z = 0, w̄′
z = 0, and

wz = w′
z. If w̄z = wz = 0, then w̄′

z = w′
z = 0. A contradiction.

36This holds under Assumptions 1-5.
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A.3 Proof of Theorem 1

First, we show two lemmas used in the main proof.

Lemma 4. Under Assumptions 1-5, G and H are strictly increasing and strictly convex.

Proof. G is strictly increasing. Take any U1, U2 ∈ RN×M such that U1 ≥ U2 and U1 ̸=
U2. Then G(U1) ≥ G(U2) by definition. In addition, note that U1

xy > U2
xy holds for some

x ∈ X and y ∈ Y . Since Px has full support, we have

Prεi(ui = U1
xy + εiy) ≥ Prεi(ui = U2

xy + εiy) > 0.

Because Eεi [ui | ui = Uxy + εiy] is strictly increasing in Uxy, we have

Eεi

[
ui | ui = U1

xy + εiy
]
· Prεi(ui = U1

xy + εiy)

> Eεi

[
ui | ui = U2

xy + εiy
]
· Prηj(ui = U2

xy + εiy),

and thus G(U1) > G(U2) holds.
G is strictly convex. Take any U1, U2 ∈ RN×M and s ∈ [0, 1]. Since

sG(U1) + (1− s)G(U2) =
∑
x

nxE
[(

max
y

s(U1
xy + εiy)

)
+
(
max

y
(1− s)(U2

xy + εiy)
)]

≥
∑
x

nxE
[
max

y
sU1

xy + (1− s)U2
xy + εiy

]
= G

(
sU1 + (1− s)U2

)
holds, G is a convex function.

Now suppose U1 ̸= U2. Then U1
xy ̸= U2

xy holds for some x ∈ X, y ∈ Y . Without loss
of generality, assume U1

xy > U2
xy. Since Px is of full support,

Pr

({
εi : U

1
xy + εiy > max

y′ ̸=y
U1
xy′ + εiy′ ∧ max

y′ ̸=y
U2
xy′ + εiy′ > U2

xy + εiy

})
> 0

holds. This implies that

(
max

y
s(U1

xy + εiy)
)
+
(
max

y
(1− s)(U2

xy + εiy)
)
> max

y
sU1

xy + (1− s)U2
xy + εiy
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occurs with strictly positive probability, and thus (A.3) > (A.3) holds. Therefore, for
any s ∈ (0, 1), we have

sG(U1) + (1− s)G(U2) > G
(
sU1 + (1− s)U2

)
,

which implies G is strictly convex. Similarly, we can show H is also strictly increasing
and strictly convex.

Proof of Theorem 1

Part 1: Suppose that w is an optimal taxation policy. For any taxation policy w, given
(Φij)ij and w, a stable outcome (d, (u, v)) is realized, and the corresponding µ, U , and
V are defined. Then, µ is a solution to (P). Since u and v are a part of the stable
outcome, U and V must satisfy Uxy + Vxy ≥ Φxy − wz(y) for each x and y, and the
market clearing condition. Since G and H are strictly increasing and convex, the market
clearing condition must hold at the optimum of (D). Thus, by the uniqueness of the
solution (Lemma 3), the aggregate-level utilities U and V coincide with the ones in the
optimal solution to (D). Therefore, for the optimal solutions to (U, V, w̄, w), we have
wz = 1{w̄z > 0}w̄z − 1{wz > 0}wz; otherwise it violates the uniqueness of (U, V, w̄, w).
37

Part 2: Suppose that µ and (U, V, w̄, w) are the unique optimal solutions to (P) and (D),
respectively. We want to claim that w, defined as wz = 1{w̄z > 0}w̄z − 1{wz > 0}wz, is
an optimal taxation policy. Suppose toward contradiction that there is another optimal
taxation policy w′. Let µ′ and (U ′, V ′) be the aggregate-level matching and utilities under
w′. Then, µ′ is the solution to (P); the market clearing condition and the uniqueness of
the solution imply that U ′ and V ′ is a part of the optimal solutions of (D). Then, by the
same argument as Part 1, w′ must satisfy w′

z = 1{w̄z > 0}w̄z − 1{wz > 0}wz for each z,
and the uniqueness of the solution imply w = w′. A contradiction.

37Let w̄′
z := 1{wz > 0}wz and w′

z := −1{wz < 0}wz. Tuple (U,W, w̄′, w′) is feasible in (D).
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A.4 The objective function of (P) corresponds to social welfare

Recall the definition of the Legendre-Fenchel transforms:

G∗(µ) :=


sup
U

{∑
x∈X

∑
y∈Y0

µxyUxy −G(U)
} (

∀x ∈ X,
∑

y∈Y0
µxy ≤ nx

)
∞ otherwise

,

H∗(µ) :=


sup
V

{∑
y∈Y

∑
x∈X0

µxyVxy −H(V )
} (

∀y ∈ Y,
∑

x∈X0
µxy ≤ my

)
∞ otherwise

.

Observe that G∗ and H∗ are both continuous in µ on their effective domains. Suppose
that (µ, U, V ) forms an aggregate equilibrium. The market clearing condition states µ ∈
∂G(U), where ∂G denotes the subgradient of G. By Proposition D.13 of Galichon (2018),
we have G(U) +G∗(µ) =

∑
x,y µxyUxy. Similarly, we have H(V ) +H∗(µ) =

∑
x,y µxyVxy.

Thus, we have

∑
x,y

µxyΦxy + E(µ) =
∑
x,y

µxyΦxy +

(
G(U) +H(V )−

∑
x,y

µxy(Uxy + Vxy)

)
= G(U) +H(V ),

where the last equality holds since Uxy + Vxy = Φxy when µxy > 0.

A.5 Another scenario for stable outcomes: deferred acceptance
with endogenous wages

Consider the following dynamic game:

1. Hospitals set the amount of monetary transfer (henceforce wage) t = (tij)ij;

2. Doctors and hospitals submit their preference lists after observing wages t;

3. The matching is finalized by the standard deferred acceptance (DA) algorithm.

Let µ : I ∪ J → I0 ∪ J0 be a function such that µ(k) denotes the partner of agent k under
µ. Denote the base utilities by ũ = (uij)ij and ṽ = (vij)ij (see Section 5 for definition.
Note that Φij = uij + vij.) Given t, doctor i’s payoff under matching µ is ui,µ(i) + ti,µ(i);
job slot j’s payoff is vµ(j),j − tµ(j),j.
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We assume that, in the second stage, all agents truthfully report their preference
ranking to the mechanism. Since the DA algorithm is strategy-proof for one side, this is
equivalent to assuming that one of the two sides, say hospital-side, reports their prefer-
ences always truth-telling.

Fix the job-slot-optimal stable outcome (d, (u, v)) given Φ.38 For (i, j) matched under
d (i.e., dij = 1), there exists t∗ij such that ui = uij + t∗ij and vj = vij − t∗ij. For (i, j) such
that dij = 0, choose any t∗ij that satisfy uij + t∗ij ≤ ui and vij − t∗ij ≤ vj. Note that such
t∗ij must exists since, by stability, we have uij + vij ≤ ui + vj.39 Given t∗, in the second
stage, each doctor i submits a preference ranking according to uij + t∗ij, and each job slot
j submits a preference ranking according to vij − t∗ij. By construction, each agent prefers
the partner matched under d most. Hence, the following lemma holds.

Lemma 5. For any i ∈ I and j ∈ J ,

vj = max
i∈I0

{
vij − t∗ij

}
, ui = max

j∈J0

{
uij + t∗ij

}
.

We also assume that, if there is a tie, each job slot always place the partner under d
on the top of the preference list in the second stage.

Given this behavior in the second stage, we can show that setting t∗ forms a NE in
the first stage since (d, (u, v)) is the job-slot-optimal stable outcome.

Lemma 6. Suppose that, in the last stage, all the agents truthfully report their preferences
to the DA algorithm and breaks the tie in favor of the partner under d. Then, it forms a
Nash equilibrium in the first stage that all the hospitals set t∗ as their wages.

Proof. Fix any job slot j. We will check if j can be strictly better off by choosing
(tij)i ̸= (t∗ij)i. Suppose toward contradiction that it is possible under tj := (tij)i. Let
i ∈ I0 denote the partner of j under d.

First, we show that j should be matched with i′ ̸= i with tj: this is clear if i = i0. If
i ∈ I and i′ = i, it violates the job-slot-optimality of (d, (u, v)).

Suppose that j is matched with i′ ̸= i with tij. Then, we have vij − tij > vj and
uij + tij ≥ ui.40 However, this implies that Φij = uij + vij > ui + vj, which violates the
stability. A contradiction.

38The set of stable outcomes form a lattice. See Chapter 8 of Roth and Sotomayor (1990) for a
textbook reference.

39t∗ij :=
1
2 ((vij − vj) + (ui − uij)) works, for example.

40This inequality is actually strict due to the tie-breaking assumption.
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The outcome of the gameplay described here coincides with the stable outcome
(d, (u, v)). Moreover, given t∗ set in the first stage, no agent has incentive to deviate
from the truthful report.

B Monte Carlo Simulation

We start by describing the overall setting of Monte Carlo simulation. All the detail
parameter values are left to Appendix B.3. There are 10 prefectures, numbered from 0

to 9, grouped into three regions: {0, 1} ∈ R0, {2, 3, 4, 5} ∈ R1, and {6, 7, 8, 9} ∈ R2. R0

represents an urban area, and R1 and R2 are rural areas. The government worries about
the inefficient supply of medical services in R2 and tryies to satisy a lower bound in terms
of number of matches in the region.

We have 20 hospitals in total. Each hospital is placed in one of the prefectures based
on a multinomial distribution. Hospital characteristics are modeled dynamically. When
we denote each hospital by h, each hospital’s capacity, denoted by cht, starts with a
Poisson distribution at time t = 0 and evolves over time through a stochastic process
involving increments and decrements modeled by independent Poisson distributions. We
use j to denote each slot in a hospital. Other hospital-specific characteristics like the
number of beds are captured by a variable zht, which follows a normal distribution.

We have 200 doctors and they are distributed among the prefectures in a similar way
of the hospitals. Each doctor belongs to a one of 20 medical schools, and the schools
themselves are distributed among prefectures, also based on a multinomial distribution.
Each school has the equal split of the docotors in the same prefecture. The schools have
characteristics like an average ability measures following a normal distribution. We use
s to denote the school and i to denote a doctor.

We define the net joint surplus generated by a matching between a slot j and a doctor
i at time t in the following way:

Φijt = Φsht + ξijt,

where

Φsht = Ubase
sht + V base

sht , ξijt = εiht + ηsjt,
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Figure 5. Simulated Stable Outcomes

and
Ubase
sht = β1,1w1,ht + β1,2w2,ht + β2 |ls − lh|+ β31{h ∈ R1 or h ∈ R2},

V base
sht = γ1x1,st + γ2x2,st,

εiht ∼ Ex1, ηsjt ∼ Ex1.

|ls − lh| is a measure of the distance between school s and hospital h: in this simulation,
we define this as the absolute value of the gap between the prefecture index. And the
last term in Ubase

sht captures the negative impact on the utility from living in rural areas.
Note that this rural areas include R1 which is not the target of the subsidy to assure
the lower bound on the matching outcomes. We also use Uijt = Ubase

sh(j)t + εih(j)t and
Vijt = V base

s(i)ht + ηs(i)jt to denote the individual level preferences.

B.1 Simulation

We compute a stable outcome of an instance of the above market at one time period. The
number of matches in each region is 94, 43, and 33. The number of unmatched doctors
is 30 and the number of unmatches of slots is 46. Imagine that the government set an
upper bound on R0 to increase the number of matches in rural regions. When we set the
upper bound on R0 to 60, an equilibrium number of mathces are: 60, 45, and 37. The
number of unmatched doctors is 58 and the number of unmatches of slots is 74. Under
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Figure 6. Aggregate Objects

this regional constraint, the tax levied on the matchings in R0 is 3.149.
Figure 5 depicts the scatter plots of several equilibrium objects when we set α = 0,

which implies that all the amount of tax is levied on hospital side. The left four panles
are obtained when we set no regional constraint, and the right four panels are obtained
when we set an upper bound on R0 to 60. The four panels in each left and right half
set of panels depict the same things for the case of no constraint and regional constraint.
The first and thrid columns are the results in the stable outcome (with optimal tax)
where each dot represents a match. The upper panels are the scatter plots of preference
of doctor i has for slot j, Uij, and the utilities attained in a stable outcome, ui. The
lower panels are the scatter plots of Ubase

ij and the transfer in a stable outcome, τih. The
second and fourth columns represent aggregate level objetcs: the upper panels are the
scatter plots of the average of Uij and ui among a matches in a hospital, and the lower
panels are the scatter plots of the average of Uij and aggregate-level transfer, ιih, from
a hospital. In all scatter plots, a red marker represents a match or a hospital in R0, a
green marker for R1 and a blue market for R2.

As expected, the utility attained in a stable outcome is higher when a doctor can
be matched with a preferred slot whereas the transfer decreases. This decrease is also
reflected in a decrease in aggregate-level transfer from a hospital: when the average of
Uij in a macthes of a hospital increases, the aggregate-level transfers from the hospital
decreases. The impact of a regional constraint on the aggregate-level transfers is clear: in
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the constrained region, R0, they decrease under the constraint compared with the case of
no constraint. This is true in the level sense and the decrease is larger than the changes
in other regions. Note that the changes in the aggregate-level transfers and their sizes
depend on the value of α. For example, in the extreme case of α = 1, the aggregate-level
transfers in R0 increases under the regional constraint. Hence, it is important to estimate
the division of tax on hospital side and school side.

Hereafter, we set α = 0.2. Figure 6 summarizes the aggregate-level objects computed
based on the simulated stable outcome. In all the heatmaps, the horizontal axis represnts
hospitals and the vertical axis represents schools. Aggregate matching is depicted in the
upper panel in the most right column. The number annotated in each cell represents
the number of matches between a hospital and a school. Aggregate-level utilities are
computed following the definition stated in (4).

For the ease of argument, we name the gap between the aggregate-level utilities and
the aggregate-level base utilities by imaginary salary: the imaginary salary from school
is defined as χU

sh ≡ Ush − Ubase
sh and the same one from the hospital side is defined as

χV
sh ≡ V base

sh − Vsh.41 Th lower left two panels in Figure 6 show the imaginary salaries
between schools and hospitals. The number of doctors in our simulation is 200, which
is insufficient for approximating the market with infinite number of doctors. This makes
the gap between the two imaginary wages computed based on U and V .42

B.2 Estimation

The estimation results in the first stage are depicted in Figure 7. The upper panels are
the heatmap of the true values of Φsh, Ush, and Vsh. They are the estimation targets.
The lower panels are the estimation results for the corresponding upper panels. We set
the degree of the polynomials to two. The estimated social surplus takes the similar
patterns of the true social surplus whereas the estimated aggregate-level utilities show
different patterns from the true values of them. These gaps are due to the incompleteness
of polynomial approximations in equation (5.2.1). In practice, we handle this problem
by inclduing non-linearly transformed base variables when making polynomial series.

For the second stage estimation, we simulate matching outcomes for two periods. In
41This name is from the fact that the results of the following two are the same: (1) the agents in one

side chooses the agent in the other side by comparing the sum of preference term, imaginary salary, and
individual disturbance and (2) Aggregate matching outcome.

42We can show that these two must be equal in the inifite sample case.
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Figure 7. Estimation Results of the First Stage

Table 10. Estimates

Parameter γ1 γ2 β1,1 β1,2 β3 β2
α
T

∑
tw0t

1−α
T

∑
tw0t

Estimate 0.151 -0.0384 0.907 -0.490 -0.527 -0.879 0.265 1.471
Standard Dev. (0.178) (0.220) (0.0670) (0.0496) (0.0922) (0.130) (0.128) (0.156)
True Value 1.00 -0.400 1.00 -0.500 -1.00 -1.00 0.378 1.510

the first period, the government set the upper bound on region 0 to 80 and in the second
period, the upper bound is changed to 60. Because, in this exercise, we assume that
the true value of aggregate-level transfers are observable, we use the moment conditions
(5.2.2) directly to construct a minimum distance estimator. We leave the detail of the
construction of this estimator in Appendix B.3. In this exercise, we use the time average
version of the moment conditions and so the tax term is just identified as the time average
of the levied tax.

Table 10 summarizes the estimation results of the second stage. The first six columns
are the structural parameters in equation (B). The last two columns are the average
taxes levied on docotr side and hospital side. From these estimation results, the estimate
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of α is 0.153 whereas the true value is 0.2. Based on these estimates, we can conduct
counterfactual analysis: for example, the taxes in the alternative regional constraints, the
matching outcomes, and the salaries are obtained by solving the equilibrium.

B.3 Minimum distance estimator

We use the time average of both of the sides to construct the moment conditions (5.2.2).
Note that, in this case, it is impossible to idenify δUht and δVht for every t because the
summation of them with respect to the time determines the moment values. Hence, all
we can identify is the average tax levied through the time periods. We define a function
g to represent the moment conditions:

g(θ) ≡



1
T

∑
t

(∑
s ωs1t

(
XU ′

s1tβU − δUHt

)
−
∑

s ωs1t
ˆ̃Us1t − ι1t

)
...

1
T

∑
t

(∑
s ωsHt

(
XU ′

sHtβU − δUHt

)
−
∑

s ωsHt
ˆ̃UsHt − ιHt

)
1
T

∑
t

(∑
s ωs1t

(
XV ′

s1tβV − δV1t
)
−
∑

s ωs1t
ˆ̃Vs1t − ι1t

)
...

1
T

∑
t

(∑
s ωsHt

(
XV ′

sHtβV − δVHt

)
−
∑

s ωsHt
ˆ̃VsHt − ιHt

)


.

Our estimator is the minimum distance estimaor where the moment condition is
specifed in (5.2.2). When we write the asymptotic variance of ˆ̃Usht and ˆ̃Vsht by SU

t and
SV
t , the optimally weighted minimum distance estimator is defined as follows:

θ̂ ≡ arg min
θ

g′(θ)S−1g(θ),

where

S =

 1
T 2

∑
t S

U
t 0

0 1
T 2

∑
t S

V
t

 .

We can compute the asymptotic distribtuion of the estimator as follows and the
standard error can be obtained directly43. As the Poisson regression in the first step has
the explicit form of SU

t and SV
t , by inserting the estimated results, we directly compute

43We assume that the polynomial approximation regarding the systematic utility is correct. When
there is a misspecification, we must treat the bias due to the misspecified model, whichi is beyond the
scope of this study.
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get the estimates of the standard errors for every parameters.

Theorem 2. Under the regularity conditions, the asymptotic distribution of θ̂ is as
follows:

√
ST
(
θ̂ − θ

)
d−→ N

(
0,
(
Γ′S−1Γ

)−1
)
,

where Γ = ∂
∂θ
g(θ).

C Additional analysis

C.1 Test of implicit tax on urban areas

Under the excessive competition for the slots in urban counties, it is possible that the
surplus generated by matches in urban counties has already been diminished due to some
external forces: for example, as the number of slots decreases, it becomes more difficult
for residency programs to secure funding. Given this consideration, the marginal effect
estimates for locations in Tokyo or other urban areas may be underestimated. Here,
we examine whether matches in urban counties are subject to an implicit tax under the
current market outcome.

Empirical strategy We define an individual level transfer as in the main analysis.
Fix any period t and an implicit taxation policy wt = (wzt)z. We define individual-level
transfer from hospital h to doctor i with a ratio α, denoted by τiht, as follows:

τiht := uit −
(
Ubase
sht + εiht − αwzt

)
.

Tax wzt is levied on the matched pair of doctor i and hospital h. The doctor incurs
fraction α of the tax; thus doctor’s payoff without transfer were to be Ubase

ijt − αwrt =

Ubase
sht + εiht −αwrt. In equilibrium, doctor i enjoys equilibrium payoff uit, which could be

different from Ubase
ijt . We interpret the difference between equilibrium payoff and payoff

without transfer as the individual-level transfer from the hospital side to the doctor side.
Now we define an aggregate-level transfer as the average of the individual-level transfer
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in a hospital h and denote it by ιht:

ιht :=
1

|D(h)t|
∑

i∈D(h)t

τiht,

where D(h)t is the set of doctors matched with any slot of hospital h at time t. We have
the same moment conditions for this case as in the main analysis.

As in the main analysis, we model the base utilities as a linear function of observable
characteristics. In addition to them, we define δUht ≡ αwr(h)t and δVht ≡ (1 − α)wr(h)t as
the levied implicit tax on school side and hospital side in period t and treat them as
parameters to be estimated. Our parameters of interest are the following: βU , βV , δUht for
every pair of h and t, and δVht for every pair of z and t. We use θ to indicate the vector
of these parameters: θ :=

(
βU , (δ

U
ht)h,t, βV , (δ

V
ht)h,t

)
.

For the estimation of the aggregate-level utilities are same as our main analysis. For
the second step, we construct the following moment conditions for θ:

∑
s

ωsht

(
XU,base′

sht βU − δUht

)
=
∑
s

ωshtÛsht − ιht, ∀ h, t∑
s

ωsht

(
XV,base′

sht βV − δVht

)
=
∑
s

ωshtV̂sht + ιht, ∀ h, t

By adopting the same measurement model, the estimating equations are as follows:

∑
s

ωshtÛsht = γ0,U + γ1,USht +
∑
s

ωsht

(
XU ′

shtβU − δUht
)
+ ψU

ht∑
s

ωshtV̂sht = γ0,V + γ1,V Sht +
∑
s

ωsht

(
XV ′

shtβV − δVht
)
+ ψV

ht.

We estimate these linear equations using BLP-type IVs.

Estimation results We take advantage of the fact that the regional constraints on
urban areas are getting the more strict as time goes to clarify the existence of implicit
tax. As we explain in Section 2, the government lowers the upper bounds on the number
of matches in the urban areas by 5% every year. Hence, if the surplus in urban areas have
been decreased due to the constraints, the estimated coefficients on dummy variables of
urban or Tokyo will decrease over the years.

Table 11 shows the estimation results based on IV estimation: where we include all the
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Table 11. Estimation Result: Tax Parameters
Degree of polynomials = 3

(1) (2) (3) (4)
University University Hospital Hospital

Constant -6.658*** -6.704*** 1.875** 1.966**
(0.314) (0.327) (0.848) (0.874)

Salary (million Yen) 2.412*** 2.519*** -1.579** -1.810**
(0.445) (0.478) (0.706) (0.793)

Urban 0.0338 0.0429 0.114* 0.119*
(0.0470) (0.0496) (0.0671) (0.0702)

Urban × 2018 0.0639 -0.00972 0.0882 0.0805
(0.0577) (0.0644) (0.0786) (0.0878)

Urban × 2019 0.0752 0.0509 -0.0886 -0.0634
(0.0575) (0.0640) (0.0821) (0.0892)

Tokyo -0.00704 -0.0740
(0.0751) (0.116)

Tokyo × 2018 0.265*** 0.0282
(0.102) (0.144)

Tokyo × 2019 0.0903 -0.0940
(0.102) (0.155)

N 2627 2627 2627 2627
Other covariates

√ √ √ √

Tokyo × Year
√ √

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Figure 8. Relative Size of Coefficients in Doctor’s Preference.

covariates in Table 5 and additioanly the interaction terms between dummy variables of
urban and Tokyo and the dummy variables of each year. As found in every specifications
for both sides, we do not find the decrease in the coefficients of dummy variables of urban
areas. Furthermore, we do not find any positive impact of living in urban areas except
for living in Tokyo in 2018. Based on these results, we conclude that the current market
does not suffer from any implicit tax and the market outcome is the aggregate equilibrium
under the reduced capacities.

C.2 Relative impacts

To grab the sizes of impacts, we compute the ratio of these coefficients to the aggregate-
level utility. Specifically, we first transform the aggregate-level utilities into monetary
unit based on the estimation results in the second stage estimation: for doctor side, we
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Figure 9. Relative Size of Coefficients in Hospital’s Preference.

compute Umoney
sht ≡

ˆ̃Usht−γ̂0,U,t

γ̂1,U
and for hospital side, we compute V money

sht ≡
ˆ̃Vsht−γ̂0,V,t

γ̂1,V
.44

Then, we take the average of these transformed aggregate-level utilities with respect to
the periods and the institutions in the other side of the market: Ūmoney

s ≡ 1
HT

∑
h,t U

money
sht

and V̄ money
h ≡ 1

ST

∑
s,t V

money
sht . Ūmoney

s and V̄ money
s are measures of the expected utilities

in the matching market computed for every universities and hospitals. Finally, we take
the ratio of the estimated coefficients to these measures to grab the relative size of the
coefficients. For the logarithm covariates, we compute the relative size of 10% changes of
the covariates.

Figure 8 depicts the histograms of the relative size of the coefficients in doctor’s
preference for the four covariates which have statistically significant influence in Table 6:
the logarithm of distance, the logarithm of the number of previous matches, the dummy

44Note that the constants depend on period t, i.e. γ̂0,U,t and γ̂0,V,t, because we include the dummy
variables of every years.
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variable of affiliation, and the logarithm of the number of beds. In each panel, we show
the mean and the median of the relative size of impacts. Although there is variation in
the utility level among the universities, the distribution of the relative size of impacts
has single peak and their means and the medians are not so different. The average of the
relative size of impact of 10% change in distance amounts to 1.4% of the doctor’s utility,
the same one of the number of previous match amounts to 4.16%, and the same one of
the number of beds amounts to 2.76%. On average, affiliation relationship amounts to
about 15.58% of the doctors’ average utillities.

Figure 9 shows the same histograms for the hospital side preference. We plot the
historgrams of the four covariates which shows the statistically significance in Table 7:
the logarithm of distance, the logarithm of the number of previous matches, affiliation
relationship, and the indicator of the public university. As the average utilities of hospitals
are larger than the ones of doctors in the monetary unit sense, the computed relative size
of impacts are likely smaller than the values obtained in the case of doctors. The average
of the relative size of impact of 10% change in distance amounts to 0.67% of the doctor’s
utility and the same one of the number of previous match amounts to 2.81%. On average,
graduates from public university, which is usually an elite school, gives 5.23% increase
in the utility of hospitals. Although the affiliation relationship gives the largest negative
impact on the utility of hospitals, this estimate is not stable for the choice of the degree
of polynomials as shown in Appendix C.3.

C.3 Results when the degree of polynomial is set to 2

Here we show the empirical results obtained when we set the degree of polynomials in
the first step to two. All the tables and figures listed here corresponds to the tables and
figures shown in Section 6 and Appendix C.1. We do not find any qualittative difference
in the main findings from the case where we set the degree of polynomials to three.
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Figure 10. Aggregate matchings, estimated systematic utilities and estimated social
surpluses.
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Table 12. Estimation Result: Preference Parameters
Degree of polynomials = 2

(1) (2) (3) (4)
University University (IV) Hospital Hospital (IV)

Constant -5.917*** -7.988*** 1.485** 1.703**
(0.225) (0.429) (0.705) (0.787)

Salary (million Yen) 0.564*** 4.129*** 0.704*** -1.231*
(0.143) (0.627) (0.142) (0.718)

Tokyo -0.129*** 0.0102 0.100* -0.00294
(0.0492) (0.0604) (0.0524) (0.0621)

urban -0.102*** 0.0524 0.252*** 0.191***
(0.0339) (0.0436) (0.0317) (0.0418)

log(Distance) -0.380*** -0.400*** -0.331*** -0.304***
(0.0157) (0.0158) (0.0150) (0.0172)

log(Previous Match) 1.583*** 1.563*** 1.663*** 1.667***
(0.0398) (0.0302) (0.0398) (0.0449)

Affiliation -0.488** -0.431*** -2.676*** -2.827***
(0.199) (0.146) (0.173) (0.194)

University hospital -0.199** 0.0127
(0.0800) (0.103)

Govermental hospital 0.0319 -0.0589
(0.0341) (0.0433)

log(Beds) 0.511*** 0.628***
(0.0359) (0.0462)

Public university 0.182*** 0.176***
(0.0531) (0.0573)

Prestige -1.905*** -3.125***
(0.668) (0.727)

N 2847 2627 2847 2627
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

60



Table 13. Estimation Result: Tax Parameters
Degree of polynomials = 2

(1) (2) (3) (4)
University University Hospital Hospital

Constant -8.028*** -7.928*** 1.755** 1.725**
(0.415) (0.427) (0.763) (0.784)

Salary (million Yen) 4.298*** 4.121*** -1.276** -1.234*
(0.589) (0.625) (0.643) (0.719)

Urban -0.100 -0.116* 0.106* 0.0755
(0.0621) (0.0649) (0.0623) (0.0646)

Urban × 2018 0.275*** 0.247*** 0.179** 0.239***
(0.0763) (0.0842) (0.0720) (0.0811)

Urban × 2019 0.217*** 0.256*** 0.0655 0.107
(0.0761) (0.0838) (0.0749) (0.0805)

Tokyo 0.0257 0.119
(0.0982) (0.101)

Tokyo × 2018 0.0976 -0.216*
(0.133) (0.123)

Tokyo × 2019 -0.145 -0.151
(0.133) (0.132)

N 2627 2627 2627 2627
Other covariates

√ √ √ √

Tokyo × Year
√ √

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Table 14. University preference parameters (unit: million Yen)
Degree of polynomials = 2

(1) (2) (3)
Coefficient of Salary = 4.129 4.298 4.121

log(Distance) -0.097∗∗∗ -0.094∗∗∗ -0.097∗∗∗
(0.01) (0.01) (0.01)

log(Previous Match) 0.378∗∗∗ 0.363∗∗∗ 0.379∗∗∗
(0.06) (0.05) (0.06)

Affiliation -0.104∗∗ -0.102∗∗ -0.106∗∗
(0.04) (0.04) (0.04)

University Hospital 0.003 0.006 0.003
(0.02) (0.02) (0.02)

Governmental Hospital -0.014 -0.015 -0.014
(0.01) (0.01) (0.01)

log(Beds) 0.152∗∗∗ 0.148∗∗∗ 0.153∗∗∗
(0.02) (0.02) (0.02)

N 2627 2627 2627
Urban × Year

√ √

Tokyo × Year
√
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Table 15. Hospital preference parameters (unit: million Yen)
Degree of polynomials = 2

(1) (2) (3)
Coefficient of Salary = 1.231 1.276 1.234

log(Distance) -0.247 -0.238 -0.247
(0.15) (0.13) (0.15)

log(Previous Match) 1.354 1.307∗ 1.352
(0.79) (0.66) (0.79)

Affiliation -2.296 -2.222∗ -2.294
(1.29) (1.07) (1.29)

Public University 0.143 0.136 0.141
(0.09) (0.07) (0.09)

Prestige -2.537 -2.451∗ -2.522
(1.37) (1.15) (1.36)

N 2627 2627 2627
Urban × Year

√ √

Tokyo × Year
√

C.4 Counterfactual simulations for the other years
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Table 16. Comparison between Aggregate-level Equilibria

Equilibrium AE AE EAE

Capacity Reduced True True
Floor No No Yes

2017
Match rate 0.868 0.912 0.912
Doctors’ welfare 82874.9 84507.3 84514.3
Hospitals’ welfare 51788.4 56209.0 56211.2
Government’s revenue 0.0 0.0 [−10.5,−7.4]
Total welfare 134663.3 140716.3 [140715.0, 140718.1]
#(subsidized regions) 0 0 3
Average subsidy 0.000 0.000 −0.040
#(constraint violations) 0 3 0

2018
Match rate 0.844 0.895 0.896
Doctors’ welfare 85736.8 86606.8 86618.1
Hospitals’ welfare 53076.2 59986.4 59992.0
Government’s revenue 0.0 0.0 [−18.9,−13.3]
Total welfare 138812.9 146593.2 [146591.3, 146596.8]
#(subsidized regions) 0 0 5
Average subsidy 0.000 0.000 −0.038
#(constraint violations) 0 5 0

2019
Match rate 0.869 0.912 0.912
Doctors’ welfare 84009.3 85291.8 85300.2
Hospitals’ welfare 53255.4 58114.9 58115.4
Government’s revenue 0.0 0.0 [−9.4,−6.6]
Total welfare 137264.7 143406.6 [143406.2, 143409.0]
#(subsidized regions) 0 0 2
Average subsidy 0.000 0.000 −0.042
#(constraint violations) 0 2 0

* All values except match rates, #(subsidized regions), and #(constraint violations) are expressed in units
of 1 million JPY per month. The government’s revenue is positive when taxes are imposed on doctors
and hospitals and negative when subsidies are provided to them. The welfare of doctors and hospitals is
scaled according to specification (1) in Table 6 and Table 7. We present the bounds of the government’s
net revenue, scaled by the coefficients on the doctor side and the hospital side, respectively. The total
welfare is the sum of doctors’ welfare, hospitals’ welfare, and the government’s revenue. #(constraint
violations) counts the number of prefectures violating the lower bounds (among the 15 rural regions).
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