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Abstract

This paper studies social learning among policymakers when formulating a

budget. Focusing on the disaster prevention policy, we model local governments’ ex-

penditures as a response to the expected future disaster risk. Through this model,

we associate the correlation of the expenditures between local governments with

the connection in the social learning about the risk. We use Japanese administrat-

ive data over 20 years to estimate a sparse social learning network. Moreover, as

the network formation determinants, we find significant effects of (1) the inflow of

internal migration between local governments, (2) the risk of future earthquakes,

and (3) the risk preference of the local citizens.
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1 Introduction

The budget allocation for a policy domain is not solely determined by the essential costs

of individual policies in that domain. Rather, the government’s comprehension about the

issue has a significant top-down influence on the allocated budget amount: for instance,

the extent to which the government estimates the risks of climate change unavoidably

shapes the allocation of expenditures towards the domain of climate change mitigation.

At the same time, however, many of the challenges the government faces are inherently

difficult to envision accurately. Issues like climate change, AI risks, and the economic

dominance of tech giants — these globally crucial challenges involve intricate structures,

rendering precise comprehension a formidable task. In making decisions to address these

challenges, social learning among policymakers plays a vital role: as we witnessed during

the COVID-19 pandemic, many countries adopted the travel ban policy after observing

other countries’ outbreaks. The social learning involves not only leveraging insights from

other nations to achieve a more accurate understanding of the issues but also aligning

with the international community by incorporating their perspectives on the problems.

However, little is known about the role of social learning in budget formulation or

forming attitudes toward policy. The social learning about the effectiveness of a specific

policy is studied in the past literature, such as Hjort et al. (2021); Vivalt, Coville and KC

(2022); Vivalt and Coville (2023), and the same topic is broadly examined in political

science as a driving force of policy diffusion.1 Our emphasis goes beyond the adoption

of individual policies and pertains to the upstream determination of the significance of a

particular issue. Even in this regard, the broadly-speaking learning remains a substantial

force. It is known that past experience is a decisive factor in the policy attitude: for

example, Malmendier, Nagel and Yan (2021) show that the monetary policies favoured

by central bankers are influenced by their personal experiences with inflation. However

these studies do not take the influence of others’ opinions into account.

Our focus lies in understanding the influence of others’ opinions and susceptibility to

1See Volden, Ting and Carpenter (2008); Gilardi (2010); Gilardi and Wasserfallen (2019), for example.
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influence during the budget formulation in a specific area. Among many significant issues

these days, we spotlight disaster prevention, which lacks clear evidence to base and is

less influenced by partisanship. We establish a model where individual local governments

act as policy entities that determines disaster prevention expenditures through social

learning by referencing others’ belief about the severity of future disasters. This model

allows us to associate the correlation of the expenditures between local governments with

the connection in the social learning about the risk. Using LASSO as in Manresa (2016),

we estimate a high-dimensional linear model, where we regress the expenditure of one

local government on the expenditures of the others, to recover the social learning network:

in other words, which local governments refer to whose beliefs.

Besides the social learning network itself, we focus on two factors as the determinants

of the network structure. The first one is the population move between prefectures. Like

the recent surge in migration between nations, there are a lot of population movements

between prefectures in Japan. We hypothesise that such a move transfers social identity

from the hometown, which causes prefecture i facing a larger population from the other

prefecture j to pay more attention to j’s belief when forming their own belief about future

disasters. While it is evident that the areas with many immigrants suffer from cultural

or religious influence, we attempt to uncover that they impact the seemingly unrelated

and obviously necessary policies, such as disaster prevention, by changing the information

source in social learning.

As another factor, we study the radical change in the social learning network after a

significant event. It is known that a severe event like a financial crisis or a catastrophic

disaster often changes human behaviours, such as investment, by altering their risk at-

titude. In our case, it is possible that a catastrophic disaster changes the basic level of

the attitude toward future disasters and makes the local governments gather information

about it in different ways. In particular, we test if the Great East Japan Earthquake in

2011 changed the way to collect the information of others. In addition to that, Hana-

oka, Shigeoka and Watanabe (2018) shows that the citizens who suffered from the Great

East Japan Earthquake in 2011 became more risk-tolerant after the disaster. Given their
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results, we consider a direct effect of the 2011 disaster and an indirect effect through

changing the risk-aversion on the social learning network.

We use Japanese administrative data to estimate the empirical social learning net-

works. The data contains each local government’s expenditure on disaster prevention and

damages by natural disasters over 20 years. We focus on non-infrastructural expenditure

(soft policy) to capture governments’ immediate updates and avoid political partisanship.

Our estimation recovers the sparse networks about the severity of future hazards

for two sample periods: pre-2011 and post-2011. We do not find any exceptionally

influential group of local governments. By analysing the mechanism of the connections

in the recovered networks, we find that a larger move from a prefecture j in i induces

more attention to j by i. Furthermore, this effect shows a non linearity: the marginal

influence of the movers is increasing. This finding is consistent with the existing literature

about the non linear increment in the influence of the minority group size (Kanter, 1977;

Dahlerup, 1988; Centola et al., 2018). As we focus on disaster prevention, which heavily

relies on geographical factors, it is surprising that such a soft power influences the actual

policies. As to the impact of a catastrophic event, we do not find any direct change

in the network connection after the Great East Japan Earthquake in 2011. However,

we do find that the more risk-averse a prefecture is, the less attention it pays to other

prefectures given the risks of future earthquakes. Given the result of Hanaoka, Shigeoka

and Watanabe (2018), this implies that the prefecture that suffered from the disaster

more severely pays more attention to others.

This paper contributes to several flows of literature. First, it contributes to the

literature on social learning about the effectiveness of specific policies as we described

above. Our current paper shows evidence that social learning plays a major role even in

the upper stream of the policymaking process. Second, for the experience effect literature,

such as Greenwood and Nagel (2009); Koudijs and Voth (2016); Kuchler and Zafer (2019);

Malmendier, Nagel and Yan (2021), our current paper highlights the impact of social

learning.

Our model of optimal disaster prevention comes from the literature about the adapt-
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ation behaviour to future disasters. Some studies have developed dynamic models that

incorporate adaptation behaviour and calibrate these models using macroeconomic data

(de Bruin, Dellink and Tol, 2009; Agrawala et al., 2010; Felgenhauer and Webster, 2014).

Fried (2021) focuses on the effectiveness of seawalls and uses dynamic models to evaluate

it. More recently, a growing number of applied microeconomic studies have attempted to

quantify the reduction in the future economic damage resulting from adaptation. Bar-

reca et al. (2016); Auffhammer (2022); Carleton et al. (2022) study the adaptation to

heat waves and Taraz (2017) considers irrigation investments as a form of adaptation to

droughts and floods. To the best of our knowledge, however, there is no empirical paper

clarifying the role of social learning in environmental policies while social learning surely

plays an important roll as we discussed previously.23

We contribute to the literature on behavioural changes after catastrophic disasters.

Some studies use survey data to reveal how social and risk preferences changed due

to natural disasters such as earthquakes and typhoons (Goebel et al., 2015; Chuang

and Schechter, 2015; Hanaoka, Shigeoka and Watanabe, 2018; Bourdeau-Brien and Kryz-

anowski, 2020). These studies suggest that the structural parameters of economic models,

which are usually assumed to remain unchanged over time, may change due to disaster

experience. Our paper reveals behavioural changes through changes in the information

sources, which are also usually treated as a constant object. Moreover, other studies in-

vestigate how the experience of disasters affects the perception of future disasters (Brown

et al., 2018; Gao, Liu and Shi, 2020). On the contrary, our study focuses on objectively

observable behavioural responses of policymakers, which themselves affect future disaster

risks and are more directly important to society.

The remainder of the paper is organised as follows. Section 2 explains the institutional

background while Section 3 illustrates the data. The model and estimation method are

discussed in Section 4, while we show the results in Section 5. Section 6 concludes the

study with discussions. The appendix exhibits further data details and robustness checks.

2A general framework of the effects from other people can be regarded as peer effects. See Bramoullé,
Djebbari and Fortin (2020) for a review.

3A few papers consider how the past disaster experience affects the expenditure on disaster prevention
and the caused damages (Hsiang and Narita, 2012; Gallagher, 2014; Hsiang and Jina, 2014).
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2 Institutional Background

2.1 Disasters in Japan

Japan suffers from piles of natural hazards. Japan has heavy rains and subsequent floods

and landslips, because it is an island country located just above subtropical areas and

most of the land is in the typical path of typhoons. Moreover, since mountains cover

three-quarters of Japanese land, heavy rain often causes landslips and flows into rivers

in a short time, which leads to a lot of floods. Also, Japanese mountainous land results

from the four tectonic plates touching each other under the land. This geological feature

makes Japan famous for frequent large earthquakes: about 20% of all the earthquakes

of magnitude over 6 happen around Japan. Besides the earthquakes themselves, the

subsequent tsunamis, occurring when a large earthquake happens in the ocean near land

— a shake of the seabed creates a wave, and it comes to the land as a tsunami — are also

notorious for their severe damages due to the difficulty of the prevention. These natural

disasters cause human damages and the destruction of houses and infrastructures.

It is worth noting that Japan has experienced two recent major earthquakes: “Hanshin-

Awaji Dai-Shinsai” and the “Great East Japan Earthquake.” “Hanshin-Awaji Dai-

Shinsai” (a catastrophe in the Hanshin and Awaji area) happened on 17 January 1995.

The magnitude was 7.2, and the largest seismic intensity (SI) scale observed was seven,

the largest in the scale (Ministry of Transport, 1996).4 This happened just beneath the

Osaka metropolitan area, and 6,434 people were killed, about 44 thousand people were

injured, and more than 10 thousand houses collapsed (Ministry of Transport, 1996; Fire

and Disaster Management Agency, 2006). Since this happened in the coastal urban area,

a lot of railway infrastructure was damaged, liquefaction of artificial islands occurred, and

many lifelines stopped. The total cost was estimated up to JPY 9.6 trillion (Ministry

of Transport, 1996). About two decades later, the largest earthquake Japan has ever

experienced occurred on 11 March 2011 in northern Japan, named the Great East Japan

Earthquake (Higashi-Nihon Dai-Shinsai in Japanese). The magnitude was 9.0 and the

4See Table A2 about the SI scale.
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largest SI observed was seven, and the following largest tsunami was 9.3 metres high (Fire

and Disaster Management Agency, 2013; Ministry of Internal Affairs and Communica-

tions, 2022). This series of disasters, especially the tsunamis, destroyed the northeastern

part of Japan: about 18 thousand people died, about three thousand people were repor-

ted missing, 129 thousand houses collapsed completely, and more than one million houses

were damaged (Fire and Disaster Management Agency, 2013). This tsunami damaged

the nuclear power plant in Fukushima, which triggered radiological damage. As shown,

damages from natural disasters in Japan are huge.

These massive damages show that it is still difficult, even impossible, to prepare

perfectly against future hazards for Japan, which is a member of G7 with a high standard

of technology. This is because of the difficulty in predicting future hazards, as exemplified

in cases of earthquakes and weather forecasts.56 Hence, even in a country that suffers

from severe disasters like Japan, the policy about disaster prevention cannot be based

on rigorous scientific evidence and instead the government has to learn the appropriate

policy, including its direction and the expenditure on it, from its own experience and

the opinions of the others: in other words, the (social) learning plays a large role in the

disaster prevention policy.

Due to a lack of solid scientific prediction and the resulting difficulty in preparing

well enough for future hazards, the Japanese government has at best learnt lessons from

catastrophic experiences. After Hanshin-Awaji Dai-Shinsai, the government updated

several laws and guidelines so that they can react to natural hazards more quickly and

more appropriately.7 Furthermore, they changed the building resistant standard against

5Although the government offers a warning a few seconds to a minute earlier than a large earthquake
in the very short-term, in the medium run, due to complications of the mechanism of earthquakes,
it is impossible to predict ones based on the current technology of seismology (Hasegawa, Saito and
Nishimura, 2015).

6These days, quite accurate weather forecasts are available in the short term, but still precision of
long-term weather forecasts is nearly impossible, according to the Met Office, the national meteorological
service for the UK. See https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/

long-range/user-guide
7More concretely, the government updated the Basic Act on Disaster Management, a law governing

how to react to catastrophes. They also updated the Disaster Management Basic Plan to have a com-
prehensive plan for each type of disaster, earthquakes, storm and flood damages, and volcanic disaster,
separately so that the government can respond appropriately to specific features of each type. The Ja-
panese government summarises the change on their website: https://www.bousai.go.jp/kaigirep/

hakusho/h17/bousai2005/html/honmon/hm120702.htm (in Japanese, last access on 25 August 2023).
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earthquakes, given about 80% of the deaths were due to collapses of housings. After the

Great East Japan Earthquake, whose damages were mainly triggered by the tsunamis,

the government focused more on preventing tsunami and flood damages such as creating

embankments and flood control dams, in addition to non-infrastructural changes including

updating evacuation instructions in the local areas. As seen, catastrophic events have

triggered policy changes in the field of disaster prevention.

To reduce the vulnerability to natural hazards, the government can take two types of

policies ranging from large infrastructural investments to relatively smaller non-infrastructural

preparations. The former contains building seawalls against tsunamis, creating retaining

walls to prevent landslips, and aseismic reinforcing work of old buildings, while the lat-

ter includes implementing disaster-related education programmes for residents, making

localised evacuation manuals and maps, and hiring experts on crisis management.8 In

this paper, we focus on non-infrastructural expenditures for several reasons. First, in-

frastructural policies are planned well in advance, say a few years, so reactions to past

earthquakes are expected to be slow, while for non-infrastructural ones, responses to

earthquakes should be much quicker. This feature makes it easier to identify whether the

effects come from recent disasters. Second, these expenditures are usually not on political

issues – contrary to other policies such as large infrastructural investment. We can ex-

clude strategic interaction among policymakers, politicians, and voters, and our model can

focus on policymaking simply based on policymakers’ decisions. Third, infrastructural ex-

penses depend more heavily on each specific local situation than non-infrastructural ones.

For example, a seawall could be effective only when a tsunami occurs, but an evacuation

manual can work for any type of hazards. Therefore, we focus on non-infrastructural

expenditures.

2.2 Budget Planning in Japan

In the analysis, we view local governments at the prefecture level as the unit of decision-

makers and in this section, we describe the role of central and local governments. Japan

8See the budget of Saitama prefecture in 2021 as an example (in Japanese, last access was on 29th
April 2023): https://www.pref.saitama.lg.jp/documents/193830/05kikikanribousaibu03.pdf.
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has 47 prefectures with an average size of 8043 square kilometres and a population of

about three million (Soga, 2019), and each has its own autonomy to decide its local

policies. Although there is a lot of overlap, the basic idea is that the central government

is in charge of national-level benefits, such as defence, pension system, business and

sightseeing. On the contrary, the local prefectures are responsible for citizens’ daily-basis

benefits in a wider range, such as constructing high schools and public primary education,

police, infrastructural investment including road construction and riparian improvement,

public health, and welfare (Soga, 2019).910 A local government’s budget for these services

comes from the local government’s income, a transfer from the central government and

local bonds. The former is mainly from local tax, which primarily consists of residential

tax (both for individuals and businesses), property tax, and car tax, which are generally

identified by their locations in local areas. The revenue from these taxes varies according

to how wealthy the residents are and how many businesses are operating in the local

areas. As a result, there is a huge disparity in the size of the revenues among prefectures.

However, they need to provide a minimum service, such as maintaining education and

others described above, so the central government provides the transfer to cover some

expenses out of national tax revenue. One is called “a local allocation tax grant,” and

each local government can decide how to use it. There is another type of large transfer,

called “national treasury distributions,” which restricts the purpose of the expense. The

local governments’ income is the combination of these sources.

Both central and local governments use their budgets in disaster prevention, but their

roles differ. The central government determines a principal plan and the standard of

prevention, and the local governments manage its administration and implementation,

in addition to making detailed plans based on local characteristics (Fire and Disaster

Management Agency, 2019). For example, the central government creates the resistance

standard of buildings against earthquakes as a law, while local governments create meas-

ures against more specific disasters expected in each area, such as earthquakes (in all

9For details, see the website of the Ministry of Internal Affairs and Communications: https://www.
soumu.go.jp/iken/jokyo_chousa.html (Last access: 29 July 2023).

10Each municipality in a prefecture is in charge of more localised services, such as public assistance,
public insurance, water and sewer, waste disposal, and fire-fighting.
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Figure 1. Typical Timeline of Budget Planning by a Local Government

prefectures but localised), tsunamis, disasters related to nuclear power plants, volcano

eruptions, and other natural disasters. As a result, although all prefectures meet a min-

imum level of prevention of natural disasters, there is a large room in adjusting the plan

and a large variation in how much each local government is prepared for incoming but

unpredictable natural disasters. This attitude towards the expenditure on disaster pre-

vention and making Japan more resistant to disasters is common across political parties.11

Therefore, it is unlikely that disaster prevention is central to political discussions. This

feature is suitable in our context where we want to avoid political strategical interaction.

Planning a budget takes a year to be completed.12 Figure 1 shows a typical timeline of

budget planning by a local government. In a typical local government, policymakers start

planning a policy in their prefecture at the beginning of a fiscal year, April, which lasts

until August.13 Then, they make a budget plan in each division and submit a request

to the budget division in their prefecture by around October. After the budget division

11A research laboratory in Waseda University in Japan summarises the arguments on the disaster
prevention before the House of Councillors election in 2022. See https://maniken.jp/kurabete_erabu/
seisaku11/ (in Japanese, last access: 25 August 2023).

12The timeline differs among central and local governments, where the former takes longer.
13This information is based on the website of Chiyoda ward in Tokyo https://city-chiyoda.

j-server.com/LUCCHIYOAI/ns/tl.cgi/https://www.city.chiyoda.lg.jp/koho/kuse/zaise/

hense-kate.html?SLANG=ja&TLANG=en&XMODE=0&XCHARSET=utf-8&XJSID=0 (in Japanese, last access:
25 August 2023) and Nippon Consultants Group, Inc. http://c.ncnavi.jp/bel/demo/contents/

046kanko/html/3_02/3_2_03_03.html (in Japanese, last access: 25 August 2023).
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receives the requests, they start making a budget for the prefecture by the end of the year

and make some adjustments early in the next year before finalising it on the governors’

side. Next, the governors submit this budget plan to a local council in the middle of

February to March, and after the discussion there and the vote, the plan is finalised as a

prefecture.

3 Data

In our empirical analysis, we use several Japanese administrative data sets. First, to

measure how much each prefecture spends on disaster prevention, we utilise the Local

Government Finance Survey (Chihou Zaisei Joukyou Chousa), collected by the Ministry

of Internal Affairs and Communications of Japan. This administrative data includes

prefecture-level information about its fiscal situation over the fiscal years from 1989 to

2021.14 It possesses various details on incomes and expenditures in a local government in

a given fiscal year, such as how much it earns from each income source and how much it

spends on each expenditure category.15 In our analysis, we use the income of prefectures

to capture the difference in the budget size and the expenditure on disaster prevention

in the category of general affairs expenses, which is used for non-infrastructural policies.

Second, the primary source of information on disaster damage is the White Paper on

Fire Service (Shoubou Hakusho in Japanese), issued by the Fire and Disaster Management

Agency, Ministry of Internal Affairs and Communications of Japan. This data set contains

annual records of the estimated monetary value of the damage caused by natural hazards,

including earthquakes, tsunamis, storms, torrential rains, floods, storm surges, volcanic

eruptions and other unusual natural phenomena. It also has other damage information,

such as the number of deaths, people reported missing, and major and minor injuries in

each prefecture. We use the data of the calendar years from 1989 to 2021.

We supplement these two administrative data sets, which we use to estimate the net-

14In Japan, a fiscal year starts at the beginning of April and finishes at the end of March.
15The latter typically has 24 categories, including opening congress, general affairs, sanitation, con-

struction, agriculture, business, education, and other items, and each may have more detailed subcat-
egories. The number of categories varies depending on the years of the records.
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work, with several administrative and survey data to explain the factors of the network

estimated. First, we use the information about the long-term predicted probability of

earthquakes in Japan. As we discussed above, earthquakes can be predicted at a certain

level of precision in the long term. National Research Institute for Earth Science and

Disaster Resilience publicises the prediction data called Japan Seismic Hazard Inform-

ation Station (J-SHIS).16 The data contains the probability of earthquakes every year,

and we employ the data from 2008 to 2020.17 This data set contains information on

predicted probabilities of earthquakes equal to or larger than the seismic intensity (SI,

Shindo in Japanese) 5 Lower (5−), 5 Upper (5+), 6 Lower (6−), and 6 Upper (6+),

occurring in 30 years, for each 250-metre square mesh across Japan.18 This probabil-

ity is calculated with a range, and we use two measures: the average and maximum

cases.19 We further summarise the information into two variables at each prefecture level

using the mesh data described below — the maximum and average probabilities in the

prefecture. We denote this variable as PSI, aggregate calculation for SI ∈ {5−, 5+, 6−, 6+},

aggregate ∈ {[a]verage, [m]aximum}, and calculation ∈ {[a]verage, [m]aximum}, where

aggregate refers to methods of aggregation over the prefecture, while calculation refers

to the method of pick a value out of predicted range of the probabilities. To aggregate

this mesh-level data into the prefecture-level information, we use the mesh code of each

prefecture, released by the Japanese Statistics Bureau.20

Second, as we discussed in the introduction, we collect data on internal migration in

Japan to examine the effects of movers. We use the Report on Internal Migration in

Japan, collected by the Japanese Statistics Bureau. This data contains information on

internal migration from 1954, including the annual number of movers between prefectures.

16The data is publicly available at https://www.j-shis.bosai.go.jp/ (Last access: 14 August 2023).
17The data in 2015 is missing, and data in several years contain the predictions based on two different

methods. We use the first method if several are available.
18See Appendix Table A2 for the reference of earthquake sizes in Japan.
19According to J-SHIS, when evaluating the major active fault zones in the long term, we often obtain

the estimate of mean recurrence and the time of the latest event as an interval. In the average case, the
model uses the earthquake occurrence probability based on the median values of the respective ranges
of the recurrence interval and the time of the latest event. In contrast, in the maximum case, the model
utilises the smallest value from mean recurrence intervals and the oldest time of the latest event to avoid
the underestimation and potentially obtain the highest probability.

20See https://www.stat.go.jp/data/mesh/m_itiran.html for their website (Last access was on
30th August 2023).
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We use data from 1995 to 2021 and calculate the ratio of movers in each prefecture based

on the total population data for each year. For the regression analysis, we take the

average of the move rate within the years before 2011 and after 2011 and make the

variable Move Rate in the percentile scale.

Third, we employ the data about the risk preference of individuals residing in Japan to

see whether the risk attitudes of local residents change their social learning behaviours.

Although we cannot observe the risk preference of policymakers directly, we proxy it

with the attitudes of those sampled from the prefecture. We use the Japan Household

Panel Survey on Consumer Preferences and Satisfaction (JHPS-CPS), which contains

panel records of national representatives. Following Hanaoka, Shigeoka and Watanabe

(2018), we construct a measure of risk aversion: a transformed reservation price of a

lottery.212223 If the measure is larger, a respondent is more risk averse. Since this survey

is at an individual level, we calculate their weighted averages at the prefecture level,

where the weight is the sampling weight offered in the survey data.

Finally, we use the information on the distance between the prefectures’ capitals issued

by the Geospatial Information Authority of Japan.24

We merge these data sets to make prefecture-level panel data. Table 1 shows the

summary statistics of the data.25 Panel A summarises information on the budget and

various damages from natural disasters in each prefecture each year. On average, the

21The original question in the questionnaire asks a respondent their willingness to pay for a lottery
with which they win JPY 100,000 (about USD 730) with the probability of a half or nothing otherwise.
There are eight prices in the list, JPY 10, 2,000, 4,000, 8,000, 15,000, 25,000, 35,000, and 50,000, and the
respondents are asked to choose whether they are willing to buy this lottery at each price or not. Then,
following Cramer et al. (2002), we calculate reservation price λ and transform it into R = 1 − λ/(αZ),
where α = 0.5 and Z = JPY 100,000 in our case.

22We calculate the risk preference based on the programming code of Hanaoka, Shigeoka and Watanabe
(2018), offered on American Economic Association website. See https://doi.org/10.1257/app.

20170048.
23Hanaoka, Shigeoka and Watanabe (2018) creates the other measure of risk aversion, which is absolute

risk aversion based on Arrow-Pratt measure (Pratt, 1964). To construct this, following Hanaoka, Shigeoka
and Watanabe (2018), we calculate the Arrow-Pratt measure of absolute risk aversion: R = (αZ −
λ)/{(1/2)(αZ2 − 2αZλ+ λ2)}. We conduct the analyses with this measure as well, and the results are
qualitatively the same.

24See https://www.gsi.go.jp/KOKUJYOHO/kenchokan.html (Last access was on 29th April 2023).
The distances are calculated based on the shortest distance (geodesic length) in the spheroid (GRS80)
to examine how physical closeness affects the selection of information sources.

25In Appendix A, Table A3 shows the summary statistics of the additional variables that are mainly
used for robustness checks.
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Table 1. Summary Statistics

Mean sd Min 25% Median 75% Max N

Panel A: Prefecture-Year-Level Records

Income (in billion yen) 1095 1052 312 584.1 763.6 1131 10139 1551
Expenditure on Disaster Prevention (in billion yen) 2.713 11.82 .2006 .9542 1.558 2.932 15.32 1551
Ratio of Expenditure on Disaster Prevention to Income (%) .2652 .4924 .0337 .1175 .18 .3149 15.32 1551

Damages by Natural Disasters
Estimated Monetary Damage 325.3 3929 0 1.803 5.71 18.02 136970 1546
Monetary Damage Rate (%)a 36.06 296.6 0 .2149 .762 2.18 5357 1546

N of Human Damageb 20.02 373.7 0 0 1 3 11770 1551
N of Deaths 18.01 329 0 0 1 3 10154 1551
N of People Reported Missing 2.011 51.69 0 0 0 0 1616 1551

N of People with Injuriesc 72.88 1027 0 2 8 29 39488 1551
N of People with Severe Injuriesd 36.14 1003 0 0 1 6 39488 1551
N of People with Minor Injuriesd 36.74 192.8 0 1 6 21 4274 1551

Panel B: Pair-of-Prefectures-Level Records

Distances between Capital Cities Prefectures (in kilometres) 519.7 355.2 11 242 445 724 2244 1081
Move Rates between Prefectures (%)
Pre 2011 .0219 .07381 .000149 .00153 .00485 .01771 1.442 2162
Post 2011 .01877 .06769 .000134 .00129 .00404 .01426 1.401 2162

Panel C: Prefecture-level Records

Risk Preference (Transformed Reservation Price)e

Pre 2011 Disasterf .8115 .03122 .7439 .791 .8148 .8305 .8882 1551
Post 2011 Disasterg .7524 .04935 .6154 .7231 .7597 .7887 .837 1551

Predicted Probability of Earthquakes in the Maximum Caseh

Maximum of Each Prefecture
Seismic Intensity of 6 Upper (P6+,mm)
Pre 2011 .1941 .2425 0 .009965 .09872 .2715 .9223 188
Post 2011 .327 .2323 .01574 .1306 .2585 .5237 .9252 423

Seismic Intensity of 6 Lower (P6−,mm)
Pre 2011 .5099 .2775 .03696 .2763 .4876 .7327 .9707 188
Post 2011 .6035 .2414 .1036 .4233 .6513 .7785 .997 423

Seismic Intensity of 5 Upper (P5+,mm)
Pre 2011 .6214 .3922 0 .2049 .8034 .945 .9993 188
Post 2011 .8432 .1412 .4188 .7761 .8751 .9593 1 423

Seismic Intensity of 5 Lower (P5−,mm)
Pre 2011 .955 .07081 .585 .9378 .9883 .9979 1 188
Post 2011 .965 .03937 .8143 .9453 .9752 .9985 1 423

Notes. 1 USD is approximately equivalent to 140 JPY. Japan is composed of 47 prefectures, so in the first row, the number of observations
is 1081 = 47∗46/2. See Figure A1 and Table A1 for the definition of the same area. According to this definition, Hokkaido does not have
any other prefectures in the same area, so the number of observations in the corresponding row is smaller. As written in Footnote ??,
the records in 1978, 1979, and 1980 do not distinguish major and minor injuries. In this table, we regard both as severe injuries.
a: We use the maximum case, defined in Footnote 19.
Notes. 1 USD is approximately equivalent to 140 JPY. Japan has 47 prefectures, so in the first row, the number of observations is
1, 081 = 47 ∗ 46/2. In Panel B, we omit the move rate between the same prefectures, and so the number of observations is 2, 162 =
47 ∗ 47 − 47. See Figure A1 and Table A1 for the definition of the same area. See Table ?? for the summary statistics of those used in
the robustness checks.
a: Monetary damage Rate is the estimated monetary damage divided by income and multiplied by 100 to be converted into a percent
unit.
b: The number of human damage is the sum of the number of deaths and people reported missing.
c: The number of people with injuries is the sum of The number of people with severe and minor injuries.
d: People with severe injuries are defined as those who have been injured due to the disaster, are taking or need to take medical treatment
and are expected to require treatment for at least one month, while people with severe injuries are defined as those who have been injured
due to the disaster, are taking or need to take medical treatment and are expected to require treatment for less than one month (Fire
and Disaster Management Agency, 1970).
e: This variable measures the willingness to pay for a lottery with which they win JPY 100,000, following Hanaoka, Shigeoka and
Watanabe (2018).
f: The survey containing this variable was conducted between January and February, so this was done before the 2011 earthquakes which
occurred on 11 March 2011.
g: The survey containing this variable was conducted between January and February 2021.
h: We use the average case, defined in Footnote 19.
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expenditure on disaster prevention is about JPY 2.7 billion (about USD 18.4 million),

which accounts for about 0.26% of total expenditure. However, the amount varies from

0.03% to 15%, depending on the prefecture and year. Despite the frequency of natural

disasters in Japan, Japan is quite resistant to them — Most of the measures on damages,

including monetary damage, human damage, and building and field damage, exhibit the

amount of zero. However, they become large from the median and huge at the maximum,

which suggests that some catastrophes caused most of the damage. The Great East Japan

Earthquake in 2011 is such an event: it caused damage of JPY 137 trillion in one year

in one prefecture. This gigantic earthquake and the following tsunamis increased the

number of deaths and people reported missing.26 In the following analysis, we use the

sum of the number of deaths, people reported missing, and people with minor and major

injuries as an indicator of human damage. Also, we use agricultural field damage, which

is the sum of the amount of rice paddy lost or buried, the amount of rice paddy flooded,

the amount of field lost or buried, and the amount of field flooded.

In Panel B, we show the statistics of the characteristics of pairs of prefectures. As

shown in Figure A1, Japan is a long country, so some pairs are close to each other

while others are far away, which creates variation in who are neighbours. Move rate,

defined by the ratio of the movers to one prefecture from another prefecture to the total

population of the former, varies across pairs of prefectures. Some pairs do not exhibit

much inflow, while some prefectures attract a lot from the paired prefecture, up to 1.4%

of the destination population.

The first part of Panel C presents the prefecture-level records. The first section shows

the risk preference measure before and after the catastrophe in 2011 separately. As

discussed in Hanaoka, Shigeoka and Watanabe (2018), we see people tend to be more

risk-tolerant after 2011, which is reflected in the smaller value of the transferred price

in post-2011. The second part of Panel C illustrates how likely a large earthquake will

happen in thirty years. As we can see, an earthquake of SI5− is very likely to happen,

26The numbers shown in Table 1 are slightly different from Section 2, because the former is the
summary of the statistics in one year, while the latter exhibits the accumulation of total damage by the
Great East Japan Earthquake in 2011, some of which were identified after 2011.
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while one of SI6+ is quite unlikely. The predicted probability of earthquakes also changed

from 2010 to 2020: almost all measures increase. We can see earthquakes of SI5− are

not too rare, with the average predicted probability from 55% to 58% in 30 years, while

SI6+ is quite infrequently. As a result, people might be getting accustomed to relatively

smaller earthquakes while still not to ones like SI6+. Therefore, in the main analysis, we

focus on the predicted probability of earthquakes of the SI of 6 Lower (SI6−) and use the

other measures in the robustness checks.

4 Model and Empirical Strategy

This section presents a model for determining the optimal adaptation level for local

governments. In Section 4.1, we formulate the dynamic problem of determining the level

of adaptation in response to future expected disasters. Section 4.2 describes how the belief

of a prefecture about the future disaster risk is incorporated into the others’ beliefs. The

model also directly connects to our empirical strategy.

4.1 Reduction-Recovery Model

Here, we describe how the government decides to invest in the disaster reduction and the

recovery. We index the time period by t while we focus on the problem of one government

and so omit the index of the government.

First, we introduce a disaster preparedness, which is denoted by Qt. This represents

the effort level for future disasters. The government chooses Qt each time to reduce the

expected disaster damages. This preparedness is not a free lunch. We assume that the

government balances the trade-offs of the current output level and the reduction in the

future capital by choosing the disaster preparedness. To prepare well for future disasters,

we must pay attention to future event in case and requires some extra activities not

directly related to the current production. In our model, this reduction in the current

output is represented as the detriment in the total factor productivity. When we write

the consumption by ct and the investment in the recovery by It+1, the budget constraint
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at time t is written as follows: for some α ∈ [0, 1],

ct + It+1 =
F

Qt

kα.

At the same time, Qt works to reduce the disaster damage. We consider the natural

hazards make damage to the capital in contrast to the existing literature which considers

they harms the output. This modification allows us to consider the catastrophic hazards

in a natural way. In other words, we can include the fat-tailed nature of the natural

hazards damage in the model. When we write the level of capital at time t by kt, the

investment in the recovery by It+1, and the natural hazard severity by Mt+1, the capital

grows in the following manner:

kt+1 =
Qt

Mt+1

ktI
η
t+1,

where η represents the effectiveness of the recovery investment. Here we include the

investment term in the multiplicative way because the recovery investment is aimed to

work in a combination with the existing capital, not the linearly additive way.

Under the above budget constraint and the law of motion of capital, the government

tries to maximize the expected lifetime utility in the infinite time horizon problem while

facing the uncertainty over the distribution of the severeness of future disasters. The

problem at time t is written in the following form: the expectation is taken to the

realization of Mt+1,

max
ct,It+1,Qt

Et

[
∞∑
n=0

βn c
1−ζ
t+n − 1

1− ζ

]

s.t.


ct + It+1 =

F
Qt
kα

kt+1 =
Qt

Mt+1
ktI

η
t+1.

Now we describe about the severity of the natural hazard, Mt+1. The government does

not know the realization of this value when making the consumption decision. It knows
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what family of distribution Mt+1 follows but does not know the exact distribution: i.e.

the government knows how to parametrize the distribution but does not know the true

parameter of the distribution. This type of uncertainty is known as structural uncertainty

in literature. As following the literature, we split the problem of learning the parameter

and the consumption decisions: when solving the utility maximization problem, the gov-

ernment uses one parameter and in the learning stage, the government uses the available

data to update the parameter. In this section, we focus on the decision stage.

We assume that Mit+1 follows a Pareto distribution whose support is [Q̄,∞] and the

scale parameter is denoted by ξ > 0. This represents the possibility of catastrophe: with

some probability, natural hazards completely disrupt the economy like Great East Japan

earthquake.

Except the direct investment of the recovery term, the damage of the disaster is

measure as the ratio of the damage on the capital: kit+1−kit
kit

= Qit

Mit+1
. When we assume

Mit+1 follows a Pareto distribution and Qit < Q̄, this damage ratio might take almost

zero with small probability. This is clear in Figure 2: where we plot the histogram of

the simulated damage rate. We plot the values of Qit

mit+1
for each draw of Mit+1 which

follows a Pareto distribution with Q̄ = 5 and ξ = 5 and for Qit = 5. Note that this is

the best case: Qit attains the largest value, Q̄. You see that, even in the best case, the

economy might suffer from almost half destruction from natural hazard under our model

with some positive probability.

4.1.1 Solution

We have one state variable, kt, and the value function is defined as V (kt) and we write it

by Vt+1, The corresponding Bellman equation is written as follows:

V (kt) = max
ct,It+1,Qt

c1−ζ
t+n − 1

1− ζ
+ βEt [V (kt+1)] .
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Figure 2. Simulated histogram of the damage rate. We draw Mit+1 from a Pareto
distribution with Q̄ = 5 and ξ = 5. The damage rate is Qit

Mit+1
where Qit = 5. The total

number of draws is 10, 000.

The F.O.C. gives us

− c−ζ
t + βEt

[
η
Qtkt
Mt+1

Iη−1
t+1 V

′
t+1

]
= 0, (1)

− c−ζ
t

Fkα
t

Q2
t

+ βEt

[
ktI

η
t+1

Mt+1

V ′
t+1

]
= 0. (2)

By envelope theorem, we have

V ′
t = c−ζ

t

αFkα−1
t

Qt

+ βEt

[
QtI

η
t+1

Mt+1

V ′
t+1

]
. (3)

From 1, we know that

c−ζ
t It+1 = ηβEt

[
kt+1V

′
t+1

]
(4)
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and from 2, we have

c−ζ
t

Fkα
t

Qt

= βEt

[
kt+1V

′
t+1

]
. (5)

By combining these and the budget constraint, we get the rule for the investment and the

consumption, we split the budget following the effectiveness of the recovery investment,

η:


It+1 = η F

Qt
kα
t

Ct = (1− η) F
Qt
kα
t .

(6)

By (3) and (5), we have

ktV
′
t = c−ζ

t α
Fkα

t

Qt

+ βEt

[
kt+1V

′
t+1

]
= (1 + α)βEt

[
kt+1V

′
t+1

]
.

By inserting this result into (4) and from (6), we have

(1− η)−ζ

(
Fkα

t

Qt

)−ζ

η
Fkα

t

Qt

= η
ktV

′
t

1 + α

⇒ ktV
′
t = (1− η)−ζ(1 + α)

(
Fkα

t

Qt

)1−ζ

.

Again by inserting this result into (5), we have

(1− η)−ζ

(
Fkα

t

Qt

)1−ζ

= βEt

[
(1− η)−ζ(1 + α)

(
Fkα

t+1

Qt+1

)1−ζ
]

(7)

⇒ 1

1 + α
= βEt

[(
Qt

Qt+1

)1−ζ (
kt+1

kt

)α(1−ζ)
]
. (8)

Now we guess the form of the optimal policy of disaster preparedness. For some b and
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γ, we assume Qt = bkγ
t . Then (7) implies that

1

1 + α
= βEt

[(
kt+1

kt

)α(1−ζ)−γ
]
.

Now we denote ω = α(1− ζ)− γ. Then,

1

1 + α
= βEt

[
M−ω

t+1

]
Qω

t

(
η
Fkα

t

Qt

)ηω

= βEt

[
M−ω

t+1

]
Q

(1−η)ω
t (ηF )ηωkαηω

t

⇒ Q
(1−η)ω
t =

(ηF )−ηω

1 + α

1

βEt

[
M−ω

t+1

]k−αηω
t

⇒ Qt =

(
η−ηω

(1 + α)βEt

[
M−ω

t+1

]) 1
(1−η)ω

F− η
1−η k

− αη
1−η

t .

Hence, we know that γ = − αη
1−η

and so ω = α(1− ζ) + αη
1−η

= α
(

η
1−η

+ 1− ζ
)
. And b is

the coefficient attached to kγ
t . The guess is verified.

We take logarithm of both sides.

lnQt =
1

(1− η)ω
ln

η−ηω

(1 + α)β
− 1

(1− η)ω
lnEt

[
M−ω

t+1

]
− η

1− η
lnFkα

t

⇒ lnQt +
η

1− η
lnQt =

1

(1− η)ω
ln

η−ηω

(1 + α)β
− 1

(1− η)ω
lnEt

[
M−ω

t+1

]
− η

1− η
ln

F

Qt

kα
t

⇒ 1

1− η
lnQt =

1

(1− η)ω
ln

η−ηω

(1 + α)β
− 1

(1− η)ω
lnEt

[
M−ω

t+1

]
− η

1− η
ln

F

Qt

kα
t

⇒ lnQt =
1

ω
ln

η−ηω

(1 + α)β
− 1

ω
lnEt

[
M−ω

t+1

]
− η lnYt

We replace F
Qt
kα
t by the observed total output Yt. And from the assumption of the Pareto

distribution of Mt+1, we can compute the expectation as follows: ξ is the scale parameter

of the Pareto distribution,

Et

[
M−ω

t+1

]
=

ξ

ω + ξ
Q̄−ω

Note that ω + ξ > 0 allows the computation. Then the logarithm of the optimal level

of disaster preparedness is determined in the following rule: note that ξ is given at this
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decision,

lnQt =
1

ω
ln

η−ηω

(1 + α)β
+ ln Q̄− 1

ω
ln

ξ

ω + ξ
− η lnYt (9)

We observe that the level of the disaster preparedness is decreasing in the output level. In

contrast, the disaster preparedness is increasing in the expected level of disaster severity

because disaster severity follows more fat-tailed distribution when ξ is small.

4.2 Social Learning

Here we describe how to make inference about the data generating process of Mt+1. This

is represented as a learning process about the true parameter of the Pareto distribution

which Mt+1 follows. This type of learning is considered in a literature as a structural un-

certainty and we usually model the process as a Bayesian update given the observation.

For example, in Weitzman (2009), the growth of the consumption follows a normal distri-

bution and the government has Pareto distribution as the prior over the variance of the

Normal distribution. Weitzman (2009) considers the government updates the prior based

on the realized growth of consumption. This learning gives us the fat-tailed posterior

distribution over the variance term.

In our model, we consider the government conducts the social learning about the

distribution: the other governments’ observations are also integrated into the belief over

the future disaster severity. In particular, we focus on the case of the asymmetric learning:

while a government A’s observation does influence on the belief of government B, the

observation of B does not influence on A’s belief. This kind of asymmetric learning is

often found in several situation and considered as a important property of the actual social

learning (Buechel et al., 2023). In our case, this is represented as the learning process on

a social network: where the government is the node and some pair of edges are connected

with a directed edges. While we do not consider the binary opinion aggregation, this

kind of learning on the social network has a long tradition. To handle this situation,

the researchers often consider a heuristics about the belief update process instead of
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considering the fully Bayesian update: classical exmpla is the famous DeGroot model

and the recent examples are Jadbabaie et al. (2012). You can find two surveys Golub

and Sadler (2017); Grabisch and Rusinowska (2020).

This is partly because it is difficult to incorporate all the available information into

the Bayesian update. Furthermore, the experimental papers give the evidence that the

agents do not take the Bayesian update. In particular in our situation, we do focus on

the continuous variable choice problem on social network. This non-binary feature makes

the Bayesian update much more difficult to tract while Board and Meyer-ter Vehn (2021)

analyzes the dynamics of the binary action spread under the fully Bayesian update in

social network.

Hence, we do follow the literature to model the social learning process in non-Bayesian

way. By introducing the index for each government i, from (9), the logarithm of the

disaster preparedness is determined in the following way:

lnQit = Di + Ei ln
ξit

ωi + ξit
+Gi lnYit, (10)

where

Di =
1

ωi

ln
η−ηiωi

i

(1 + αi)βi

+ ln Q̄, Ei = − 1

ωi

, Gi = −ηi.

First, we consider the learning target of the social learning is ln ξit
ωi+ξit

not the scale

parameter of the Pareto distribution, ξ. Hereafter, we denote θit = ln ξit
ωi+ξit

. This is

because θit is the sufficient statistics for determining the disaster preparedness. The

learning of i at the end of t proceeds as follows: (1) from the information of Qjt and Yjt

and the parameter values, the government i can retrieve the value of θjt using the optimal

decision rule, (2) i learns from its own experience of Mit+1 to update the belief about

θit, which is denoted by θ̃it+1 and (3) θ̃it+1 and θjt for all j ̸= i are linearly combined

to generate θit+1. This process takes the similar form of the learning rule of Jadbabaie

et al. (2012) which assure the asymptotic learning occurs under this learning rule when

the state space is finite. When we write the weight on other government j of government
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i by γij, we can write the learning rule as follows:

θit+1 = γiiθ̃it+1(θit,Mit+1) +
∑
j ̸=i

γijθjt. (11)

Here θ̃it+1(θit,Mit+1) represents the dependence on the prior and the observation. But

we do not specify the exact update rule to this point. Note that we assume that there

exists the information delay from the other region. In other words, the government i does

include the one period before disaster severeness of the other regions to update its belief.

As discussed in Section 2.2, this represents the real budget formulation process.

4.3 Empirical Strategy

Now we discuss our empirical strategy to uncover the social learning network. By inserting

the optimal decision rule (10) into the learning rule (11), we have the following:

lnQit+1 −Gi lnYit+1 −Di

Ei

= γiiθ̃it+1(θit,Mit+1)+∑
j ̸=i

γij
lnQjt −Gj lnYjt −Dj

Ej

.
(12)

This gives the linear model which connects the disaster preparedness of all the govern-

ments:

lnQit+1 = Di −
∑
j ̸=i

γij
Ei

Ej

Dj +Gi lnYit+1 +
∑
j ̸=i

γij
Ei

Ej

lnQjt

−
∑
j ̸=i

γij
EiGj

Ej

lnYjt + Eiθ̃it+1(θit,Mit+1).

(13)

By considering the first two terms as the government specific constant and the last

term as the error term, this gives us the linear regression model where the explaining

variables are lnYit+1, lnQjt for j ̸= i and lnYjt for j ̸= i.

lnQit+1 = Ci +Gi lnYit+1 +
∑
j ̸=i

δij lnQjt +
∑
j ̸=i

λij lnYjt + ϵit+1 (14)
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where

Ci = Di −
∑
j ̸=i

γij
Ei

Ej

Dj, δij = γij
Ei

Ej

, λij = −γij
EiGj

Ej

.

We have two remarks on this model. First, we can consistently estimate δij because

the error term ϵit+1 is not correlated with lnQjt conditional on lnYjt. But we cannot

estimate Gi consistently because lnYit+1 and ϵit+1 correlates. Second remark is about the

dimensionality of this regression. The right hand side contains all the other governments’

disaster preparedness and the outputs for each government i. This makes the problem

high dimensional: we cannot estimate this equation by ordinary least squares. Instead

we use LASSO to recover the network structure following Manresa (2016).

We take the first difference of (14) to make the estimation equation:

∆ lnQit+1 = Gi∆ lnYit+1 +
∑
j ̸=i

δij∆ lnQit +
∑
j ̸=i

λij∆ lnYjt +∆ϵit+1.

Using the estimates of these δij, which are denoted by δ̂ij, we clarify the determinants

of the social learning network. Imagine we have several sets of δ̂ij, estimated using the

different sets of time periods. We index them by τ . In our following application, this

corresponds to the pre-catastrophic disaster period, τ = 1, and the post-catastrophic

disaster period, τ = 2. Now, our estimated parameters are denoted by δ̂ijτ .

Because most of our estimated value is exactly 0 due to the sparse social network, we

specify a cutoff model to represent the weights where µ is the cutoff for non-zero entry:

Zijτ = X ′
ijτβ + κtime

τ + κin
i + κfrom

j + uijτ

γijτ =


eZijτ if Zijτ > µ

0 otherwise.
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And so the estimated coefficient is modeled as

δijτ =


Ei

Ej
eZijτ if Zijτ > µ

0 otherwise.

For taking the logarithm of the positive values of δijτ , this model is a Tobit model with

non-zero cutoff. Following Carson and Sun (2007), in the estimation we should replace

the cutoff by the minimum of ln δijτ − lnEi + lnEj. Unfortunately, we do not observe Ei

and so, in the second stage estimation, we assume that Ei = E for all government i.

Assumption 1 αi(
ηi

1−ηi
+ (1− ζi)) is common for all i.

Under Assumption 1, by replacing µ by min{ln ˆδijτ} among ijτ such that ˆδijτ > 0, the

usual Tobit estimation gives us the consistent result: see the detail in Carson and Sun

(2007).

5 Estimation Result

This section presents the estimation results. As discussed, we use data from 1998 to 2021

and divide our sample into two periods, before and after the Great East Japan Earthquake

in 2011. In Section 5.1, for each sample period, we estimate the social learning network

separately. Then, in Section 5.2, we examine the determinants of the social learning

network: for example, population moves across prefectures and influences of predicted

probability of future earthquakes.

5.1 Social Learning Network

By taking the first difference of Equation (??), we eliminate the fixed effect term, z̃ai , and

then our estimation equation is as follows:

ait+1 − ait =
∑
j

ξij(ajt − ajt−1) + ϵit+1 − ϵit.
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Table 2. Changes in Network After the Catastrophe: Off-diagonal Elements

Edge Existing Before 2011 After 2011

Measured by log Expense
Yes 105 2
No 2057 2160

Measured by Ratio of Expense to Income
Yes 32 3
No 2130 2159

Notes: Before 2011, if prefecture i has a node from prefecture j with the
measure of Ratio of Expense to Income, it has one also with the measure
of ln Expense. After 2011, if prefecture i has a node from prefecture j with
the measure of Ratio of ln Expense, it has one also with the measure of
Expense to Income.

Note that this is a high-dimensional problem. In other words, the number of parameters

is 47×47 = 2209, and it is larger than the number of observations, 47×# years, where we

have at most 22 years of observations in our pre-2011 sample. This is one of the reasons

we use LASSO to estimate the network structure as in Manresa (2016). The other reason

is that this methodology corresponds to our hypothesis that the social learning network

is sparse: each local government does not have the infinite capability of attention, and

instead, it distributes limited attention to a few numbers of selected others.

As to the execution of LASSO, we use cross-validation to pick the best tuning para-

meter in LASSO. This method gives us the variations of the estimated social learning

network due to the different sub-samples in cross-validation. To resolve this variation, we

conduct 200 times the same estimation to obtain their mean as our recovered network. To

obtain more robust estimation results with a smaller variance of the penalty parameter,

we use the logarithm of the non-infrastructural expenditure on the soft adaptation as the

measure of ait instead of the raw values.

Figure 3 shows the estimation results of the social networks: Panel (a) is the network

obtained before 2011 and Panel (b) is the network obtained after 2011. In both panels,

we plot the heatmap of the estimated coefficients ξ̂ij. The rows represent the index i,

who learns from the others to infer the future disaster risk, and the columns represent

the index j, the information source in social learning. The scale of the coefficients is

[0, 1], and the larger value corresponds to the darker colour. The order of the prefecture

is based on the unique number of prefectures adopted by the Japanese government. The
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Table 3. Changes in Network After the Catastrophe: Off-diagonal Elements

Tobit Model

(1) (2) (3) (4) (5) (6)

Post 2011 -0.277*** -0.277*** -0.111* -0.176** -0.156** -0.222***
(0.0296) (0.0295) (0.0637) (0.0739) (0.0629) (0.0788)

Similarity 0.0723 0.146 0.885** 0.983**
(0.115) (0.123) (0.434) (0.484)

log Move Rate (MR) 0.0300** 0.0183 0.0971** 0.115**
(0.0128) (0.0155) (0.0448) (0.0483)

log Distance 0.00124 -0.0236 0.0742 0.108
(0.0252) (0.0331) (0.0971) (0.102)

Risk Preference -0.0658 -0.0776 0.0300 -0.00109
(0.187) (0.184) (0.197) (0.195)

logP in -0.00705 -0.00841 -0.241 -0.198
(0.0196) (0.0279) (0.216) (0.229)

Same Area Dummy -0.0136 -0.0397 -0.00145 -0.0307
(0.0642) (0.0706) (0.0646) (0.0714)

logDamagein 0.0287** 0.0282** 0.0941 0.0724
(0.0122) (0.0130) (0.0941) (0.0982)

logHuman Lossin -0.00318 0.0128 -0.149 -0.0924
(0.0138) (0.0152) (0.135) (0.140)

logMR× logP in 0.0212 0.0280*
(0.0137) (0.0148)

logDistance× logP in 0.0347 0.0393
(0.0238) (0.0247)

Similarity× logP in 0.270* 0.268
(0.163) (0.177)

logMR× logDamagein 0.0174*** 0.0190***
(0.00613) (0.00674)

logDistance× logDamagein 0.00668 0.0131
(0.0104) (0.0111)

Similarity× logDamagein 0.0565 0.0560
(0.0506) (0.0534)

logMR× log Human Lossin 0.0131 0.00896
(0.0103) (0.0108)

logDistance× log Human Lossin 0.0207 0.0137
(0.0199) (0.0206)

Similarity× log Human Lossin 0.165** 0.120
(0.0830) (0.0841)

N 4324 4324 4324 4324 4324 4324
Other Controlsa x x x x
FE x x x

Notes: Heteroscedasticity-robust standard errors are in parentheses. The superscripts, ***, **, *, denote
the statistical significance at the 1 percent, 5 percent, and 10 percent level, respectively. Before 2011, if
prefecture i has a node from prefecture j with the measure of Ratio of Expense to Income, it has one also
with the measure of log Expense. After 2011, if prefecture i has a node from prefecture j with the measure
of Ratio of log Expense, it has one also with the measure of Expense to Income.
a: We include an extensive set of controls, such as variables of from prefectures. See Table B2 for the full
results. Each column number of this table corresponds to that in Table B2.

prefectures are numbered basically from the north to the south, so prefectures numbered

closely are located close to each other.27

First, our estimate shows a lot of darker-coloured cells on the diagonal components,

suggesting that social learning concentrates on their own experience. This is intuitive

because policymakers may care about the damage they have experienced in the previous

period, update their policy, and adjust expenditures for future damage. Second, we see

27See Figure A1 and Table A1 for the numbering rule.
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Table 4. Changes in Network After the Catastrophe: Off-diagonal Elements

Tobit Model

(1) (2) (3) (4) (5) (6)

Post 2011 -0.277*** -0.277*** -0.111* -0.176** -0.156** -0.222***
(0.0296) (0.0295) (0.0637) (0.0739) (0.0629) (0.0788)

Similarity 0.0723 0.146 0.885** 0.983**
(0.115) (0.123) (0.434) (0.484)

log Move Rate (MR) 0.0300** 0.0183 0.0971** 0.115**
(0.0128) (0.0155) (0.0448) (0.0483)

log Distance 0.00124 -0.0236 0.0742 0.108
(0.0252) (0.0331) (0.0971) (0.102)

Risk Preference -0.0658 -0.0776 0.0300 -0.00109
(0.187) (0.184) (0.197) (0.195)

logP in -0.00705 -0.00841 -0.241 -0.198
(0.0196) (0.0279) (0.216) (0.229)

Same Area Dummy -0.0136 -0.0397 -0.00145 -0.0307
(0.0642) (0.0706) (0.0646) (0.0714)

N 4324 4324 4324 4324 4324 4324
Other Controlsa x x x x
Cross x x
FE x x x
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(b) After 2011

Figure 3. Social learning networks before and after Great East Japan Earthquake.
Panel (a) uses 1998 to 2010 and Panel (b) uses 2011 to 2021. The numbers of pre-
fectures are according to the officially determined ones which we show in Section 3. The
(i, j) element represents the estimated values of ξij in Equation (??).

some off-diagonal elements on the network before 2011, i.e. there was social learning.

Our interpretation is that before 2011, people did not entirely recognise what damages

they would face by a catastrophe and were not fully aware of how they could prepare

for it, which induced policymakers to learn from others. On the other hand, after 2011,

most off-diagonal elements disappeared. This could be because people became much more
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aware of the risk of a catastrophe – recall that the 2011 earthquake was the fourth-largest

earthquake in human history, and mass media reported it very intensely for the entire

years even until now – so they came to focus on their own problem, instead of learning

its importance from others (Nishida, 2022; Hara, 2022). We highlighted the change in

the number of off-diagonal elements in Table 2. We examine this pattern with different

measures of the network, but the decline is robust to our choice of variables. Further,

we examine the possibility that other observable factors that simultaneously changed in

2011 altered the network pattern. We run a regression based on the linear probability

model and a Probit model, where the dependent variable is an indicator of whether a

tie from prefecture i to j exists, i.e., 1{ξij > 0}, while the main independent variable is

a dummy variable indicating post-2011. Table B1 in Appendix B supports the previous

explanation, regardless of the specifications and the choice outcome variables. The set of

results is compatible with the idea that learning from the past plays a more important role

than learning from others, which is consistent with the previous literature (Malmendier,

Nagel and Yan, 2021). Finally, even before 2011, we do not see a clear geographic pattern

from whom they learn. As explained above, the prefectures that have a similar number

are located closely, so if they had learnt from nearby prefectures, we would see a cluster

in the heatmap. However, Figure 3 does not show this pattern, suggesting that the choice

of prefectures that they learnt from were selected in different criteria. We will investigate

what the drives of network formation are in the following subsection.

5.2 Network Mechanism

This subsection presents our analysis of the determinants of the social learning network.

In Equation (??), XijT includes the following variables: The distance between i and j,

which is computed as the geographical distance between the corresponding city halls. This

is written as Distance. The ratio of the movers in percentile scale from j to i to the total

population in i. Hereafter, we write this by Move Rate. The expected risk of the future

earthquakes, denoted as Psize,XX for size ∈ {5−, 5+, 6−, 6+} and XX ∈ {aa, am,ma,mm}

is also included. In the following regression, we include these measures of the earthquake
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Table 5. Sensitivity Check with respect to Similarity Measures: Off-diagonal Elements

Tobit Model

(1) (2) (3)
Similarity Measure Alla Non Geographicala Geographicala

Post 2011 -0.222*** -0.222*** -0.214***
(0.0788) (0.0788) (0.0797)

Similarity 0.983** 0.983** -0.109
(0.484) (0.484) (0.159)

log Move Rate (MR) 0.115** 0.115** 0.0879*
(0.0483) (0.0483) (0.0494)

log Distance 0.108 0.108 0.0550
(0.102) (0.102) (0.101)

Risk Preference -0.00109 -0.00110 0.0390
(0.195) (0.195) (0.193)

logP in -0.198 -0.198 0.0701
(0.229) (0.229) (0.143)

Same Area Dummy -0.0307 -0.0307 -0.0420
(0.0714) (0.0714) (0.0718)

logDamagein 0.0724 0.0724 0.123
(0.0982) (0.0982) (0.0777)

logHuman Lossin -0.0924 -0.0924 0.0280
(0.140) (0.140) (0.105)

logMR× logP in 0.0280* 0.0280* 0.0203
(0.0148) (0.0148) (0.0139)

logDistance× logP in 0.0393 0.0393 0.0213
(0.0247) (0.0247) (0.0233)

Similarity× logP in 0.268 0.268 -0.00179
(0.177) (0.177) (0.0407)

logMR× logDamagein 0.0190*** 0.0190*** 0.0165**
(0.00674) (0.00674) (0.00671)

logDistance× logDamagein 0.0131 0.0131 0.00642
(0.0111) (0.0111) (0.0118)

Similarity× logDamagein 0.0560 0.0560 0.0131
(0.0534) (0.0534) (0.0214)

logMR× log Human Lossin 0.00896 0.00896 0.00438
(0.0108) (0.0108) (0.00990)

logDistance× log Human Lossin 0.0137 0.0137 0.0000486
(0.0206) (0.0206) (0.0177)

Similarity× log Human Lossin 0.120 0.120 0.0413**
(0.0841) (0.0841) (0.0206)

N 4324 4324 4324
Other Controlsb x x x
FE x x x

Notes: Heteroscedasticity-robust standard errors are in parentheses. The superscripts,
***, **, *, denote the statistical significance at the 1 percent, 5 percent, and 10 percent
level, respectively. The specification is the same as Column (6) of Tables 4 and B2.
Before 2011, if prefecture i has a node from prefecture j with the measure of Ratio of
Expense to Income, it also has one with the measure of log Expense. After 2011, if
prefecture i has a node from prefecture j with the measure of Ratio of log Expense, it
has one also with the measure of Expense to Income.
a: For All similarity measure, we use (i) non-geographical variables, including the
predicted probability of having the maximum probability over each prefecture of having
an earthquake at the level of Seismic Intensity of 6 Upper or larger in 30 years in the
Maximum Case, the average total damage by natural hazards, the average income of
a prefecture, average damage ratio (total damage over income), the average number
of deaths due to natural hazards, the average number of people found missing due to
natural hazards, the average number of people seriously injured due to natural hazards,
the average number of people lightly injured due to natural hazards, and (ii) geographic-
related variables, such as number of nuclear power plants as of 2018, forest ratio as of
2017, artificial forest ratio as of 2017, and length of the coastal line as of 2016. All
averages are taken over each pre or post-2011 period. For Non-geographical similarity
measure, we use the above category (i), while for Geographical similarity measure, we
use the above category (ii).
b: We include an extensive set of controls, such as variables of from prefectures. See
Table B3 for the full results. Each column number of this table corresponds to that in
Table B3.
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Table 6. Sensitivity Check with respect to Similarity Measures: Off-diagonal Elements

Tobit Model

(1) (2) (3)
Similarity Measure Alla Non Geographicala Geographicala

Post 2011 -0.222*** -0.222*** -0.214***
(0.0788) (0.0788) (0.0797)

Similarity 0.983** 0.983** -0.109
(0.484) (0.484) (0.159)

log Move Rate (MR) 0.115** 0.115** 0.0879*
(0.0483) (0.0483) (0.0494)

log Distance 0.108 0.108 0.0550
(0.102) (0.102) (0.101)

Risk Preference -0.00109 -0.00110 0.0390
(0.195) (0.195) (0.193)

logP in -0.198 -0.198 0.0701
(0.229) (0.229) (0.143)

Same Area Dummy -0.0307 -0.0307 -0.0420
(0.0714) (0.0714) (0.0718)

N 4324 4324 4324
Other Controlsb x x x
FE x x x

probabilities for both learning and learned prefectures: the upper subscript in and from

indicate them. We also include the measures of the experienced disaster damages as the

control variables: specifically, the number of human damage, the number of injuries, the

monetary damage rate, and the size of the agricultural field damage. For the variables

that vary each year, we take the average value of them in the sample period, i.e., we take

the average among the pre-2011 period and the post-2011 period to compute the value

for each sample period.

We have 16 measures of the predicted risk of future earthquakes as we defined in

Section 3. Among them, we show the four results obtained when we choose the average

risk of SI6+ over the prefecture calculated by the maximum case method. This is because

Japanese citizens are accustomed to earthquakes, and ones below SI5− do not seem large

enough to alter their views of the future disaster risk. This is reflected by the mean

and the variance of P5− in Table 1. As to the calculating methods, our main motivation

is whether a catastrophe alters policymakers’ behaviours, so it seems more suitable to

use the probability measured by the maximum case method. We show the results using

P6+,mm as the predicted probability in the main analysis, while the choice of the prediction

methods does not change our results.
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To uncover further the drivers of network formation even with the limited number

of observations, we create three measures of similarity across prefectures calculated as

cosine similarity, based on observed characteristics: All, Non-geographical, and Geograph-

ical. For All similarity measure, we use (i) non-geographical variables, including the

predicted probability of having the maximum probability over each prefecture of having

an earthquake at the level of Seismic Intensity of 6 Upper or larger in 30 years in the

Maximum Case, the average total damage by natural hazards, the average income of

a prefecture, average damage ratio (total damage over income), the average number of

deaths due to natural hazards, the average number of people found missing due to natural

hazards, the average number of people seriously injured due to natural hazards, the aver-

age number of people lightly injured due to natural hazards, and (ii) geographic-related

variables, such as number of nuclear power plants as of 2018, forest ratio as of 2017,

artificial forest ratio as of 2017, and length of the coastal line as of 2016. All averages

are taken over each pre or post-2011 period. For Non-geographical similarity measure, we

use the above category (i), while for Geographical similarity measure, we use the above

category (ii).

Table ?? shows the results when we use P6−,aa as the measure of the future probability

of earthquakes. We have three specifications in total. The first column corresponds to

the simplest one, where we regress the logarithm of the estimated coefficients in the first

stage on the set of variables that we explained above. The second column shows the

result where we additionally control for the area-level fixed effects.2829 The third column

shows the result obtained when we care about the selection bias: because we use LASSO

in the first stage, most of the coefficients are estimated as exactly 0. We consider this

situation as a selection problem like in the Tobit model, and we conduct Heckman’s

two-step estimation to avoid selection bias.

The first finding is that the population move from prefecture j to i influences the

28We group prefectures into 9 areas following a Japanese standard, as we explain in Appendix A.
29Note that, due to the number of observations in the second stage, we use the area-level fixed ef-

fects instead of the individual prefecture-level fixed effects. This additionally imposes an assumption
that disaster preparedness is common among the prefectures in the same area, based on the model in
Subsection 4.1.
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attention to the prefecture j from i. The squared move rate has a statistically significantly

positive coefficient, which implies that the marginal influence of the move rate grows as

the move rate increases. We plot the fitted value obtained for column (3) in Figure ??,

which shows that there are pairs of prefectures that increase the strength of the connection

from the increasing part of the quadratic function. Specifically, 6.47% of all the pairs have

the positive marginal effect of increasing the move rate. This is robust to all the other

measures of the future disaster risk and the way of aggregations, shown in Appendix B.30

We propose two potential mechanisms which explain the effect of the move rate. One

is the soft power, i.e., the atmosphere generated by the demographics. When a prefecture

has an amount of move from another prefecture and the movers constitute a community

in the prefecture, their voices can make the prefecture as a whole feel sympathy for their

origin. In particular, a severe event like a catastrophic disaster incurs sympathy and often

leads to an action like fundraising. These intangible feeling generated by the movers has

a certain power over the actual policies. The other is the direct influence of the political

system. The movers have the political right, and politicians listen to their voices. Under

the democratic political system, the distributional change in the demographics should be

reflected by the implemented policy.

The positive coefficient of the Move Rate Squared implies that this power of the com-

munity is not linear: As the community grows, the marginal influence of the community

also increases. This kind of non linear increment in the influence of the minority has

been found in several situations including politics: for example, Kanter (1977); Dahlerup

(1988) found the different ratio of the women politicians leads to the different political

outcomes, and recently Centola et al. (2018) experimentally explore the existence of the

critical mass in the ratio of the minority group causing a conventional change. Our result

can be considered as an additional evidence of this type of non linear increment of the

community influence.

Given the estimates in Column (3) of Table ??, we compute the change in the weights

on prefecture j (γij) when the Move Rate for each pair of prefectures increases by 0.1

30We note that the coefficients of Move Rate are not always found to be statistically significantly
negative.
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standard deviations (0.007), which gives the median of the effects equal to −0.144. This

implies that the attention paid to j decreases by about 14%. Since the coefficient of the

first-order term is estimated imprecisely, we recalculate it by assuming its coefficient is

zero. This exercise reduces the value to 0.012, implying an increase in the attention to

j by 1.2% when the Move Rate increases by 0.1 standard deviations, which seems more

reasonable.

The second finding is that the prefectures facing larger earthquake risks in the future

have less attention to the others. This is shown in the estimated coefficients of the set

of lnDin
6−,aa. For such a prefecture, the information about the own risk is enough to

determine the future adaptation level, and the information about others’ adaptation is

not useful for the inference about the true state and for the future policy. As to the size

of the effect, an increase in the probability of the future earthquake by 1% decreases the

weight on local government j by 0.061: i.e., 6.1% decrease in attention.

Another factor of a decrease in the attention to others is the risk-aversion of their

citizen. The cross term of the measure of the risk aversion and the probability of the

future earthquake has a statistically significant negative coefficient. When a prefecture is

more risk-averse, the risk of a future disaster decreases the attention to others. Hanaoka,

Shigeoka and Watanabe (2018) shows that the citizens of the prefecture that suffered from

the catastrophic earthquake in 2011 have become more risk-tolerant. Hence, the current

estimation result implies that the prefecture that severely suffered from the earthquake of

2011 pays more attention to the others given the risk of future earthquakes. In contrast

to this indirect effect through the change in risk-aversion, we do not find the direct effect

of the Great East Japan Earthquake in 2011: The coefficient attached to the dummy

variable of post-2011 does not have an effect on the network structure.

Next, we investigate the influence of the size of future earthquakes. Table ?? shows

the results obtained when we use a measure of the different SI sizes. As shown, the

estimation results of the coefficients of Move Rate and its squared value are similar to

those in Table ??. However, the estimation results of the coefficients of lnDin and its cross

terms with lnTP exhibit clear differences. We do not find that the future earthquake
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risk of SI5− has an impact on learning behaviour. It seems the information about this

level of earthquakes is not surprising to Japanese citizens due to its frequency. On the

contrary, we do find the same direction of the impact from the information about the

future earthquake risk of SI6+. However, the scale of the influence is reduced. One

possible reason for this non-monotonicity is the severeness of such a large earthquake is

hard to imagine due to the scarcity of the experience.

6 Discussion and Conclusion

In this paper, using administrative data on the expenditure on disaster prevention by

the Japanese local governments, we empirically recover who uses whose information to

update the belief about the severity of future disasters. Then, we study what factors

determine the connection in the learning network.

First, our estimation reveals that the local governments refer to others’ information

to infer the uncertain future disaster risk. This is evidence that social learning is crucial

in policymaking for complicated problems like disaster prevention policies. Furthermore,

we find that the movers from the other area influence the attention to the area. When a

prefecture i has more movers from a prefecture j, the government of i is getting to pay

more attention to prefecture j. While we do not find the network changes radically due to

a catastrophic event, which is the Great East Japan Earthquake in 2011 in our case, we

find that, given the risk of future earthquakes, prefectures having suffered from it more

severely are more likely to pay more attention to other prefectures through becoming

more risk-tolerant.

Our method is not limited to the disaster prevention policy. As discussed in the

introduction, many problems must be based on learning, such as climate change, AI risk,

and Big Tech’s economic dominance. Similar social learning from others, where others

often mention the other nation, plays a prominent role in such policy areas. Because

any of them will have an enormous impact on the future of the world economy, when

deciding the policy direction, the government must acknowledge its own inclination in
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information usage to make better decisions. At this point, the research about social

learning behaviour will help understand the fundamental bias of policymaking.

Besides the necessity of the research on the other issues, climate change and the ef-

fectiveness of the adaptation are necessary to be studied more in the future. While our

focus is not on a quantitative understanding of the soft adaptations, such as making

evacuation manuals, we need to clarify the effectiveness of this type of disaster preven-

tion because they demand less money than the hard adaptations like building seawalls,

which are easier to implement in developing countries. In the era of climate change, soft

adaptation is becoming more necessary for the fairness to the disaster risk.
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A Additional Tables and Figures

Figure A1. Prefecture Numbers and Regional Division of Japanese Prefectures

The numbers on prefectures correspond to those in the main analysis.

Table A1. Regional Division of Japanese Prefectures

Area Prefectures in the area

Hokkaido & Tohoku Hokkaido, Aomori, Iwate, Miyagi, Akita, Yamagata, and Fukushima
Kanto Ibaraki, Tochigi, Gumma, Saitama, Chiba, Tokyo, and Kanagawa
Koshinetsu Niigata, Yamanashi, and Nagano
Hokuriku Toyama, Ishikawa, and Fukui
Tokai Gifu, Shizuoka, Aichi, and Mie
Kinki Shiga, Kyoto, Osaka, Hyogo, Nara, and Wakayama
Chugoku Tottori, Shimane, Okayama, Hiroshima, and Yamaguchi
Shikoku Tokushima, Kagawa, Ehime, and Kochi
Kyushu & Okinawa Fukuoka, Saga, Nagasaki, Kumamoto, Oita, Miyazaki, Kagoshima, and Okinawa
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Table A2. Seismic Intensity Scale of Earthquakes in Japan

Panel A: Human perception and reaction

Seismic intensity Description
0 Imperceptible to people, but recorded by seismometers.
1 Felt slightly by some people keeping quiet in buildings.
2 Felt by many people keeping quiet in buildings. Some people may be awoken.
3 Felt by most people in buildings. Felt by some people walking. Many people are awoken.
4 Most people are startled. Felt by most people walking. Most people are awoken.

5 Lower Many people are frightened and feel the need to hold onto something stable.
5 Upper Many people find it hard to move; walking is difficult without holding onto something stable.
6 Lower It is difficult to remain standing.
6 Upper It is impossible to remain standing or move without crawling. People may be thrown through

the air.
7 It is impossible to remain standing or move without crawling. People may be thrown through

the air.

Panel B: Indoor situation

Seismic intensity Description
0
1
2 Hanging objects such as lamps swing slightly.
3 Dishes in cupboards may rattle.
4 Hanging objects such as lamps swing significantly, and dishes in cupboards rattle. Unstable

ornaments may fall.
5 Lower Hanging objects such as lamps swing violently. Dishes in cupboards and items on bookshelves

may fall. Many unstable ornaments fall. Unsecured furniture may move, and unstable furniture
may topple over.

5 Upper Dishes in cupboards and items on bookshelves are more likely to fall. TVs may fall from their
stands, and unsecured furniture may topple over.

6 Lower Many unsecured furniture moves and may topple over. Doors may become wedged shut.
6 Upper Most unsecured furniture moves, and is more likely to topple over.

7 Most unsecured furniture moves and topples over, or may even be thrown through the air.

Panel C: Outdoor situation

Seismic intensity Description
0
1
2
3 Electric wires swing slightly.
4 Electric wires swing significantly. Those driving vehicles may notice the tremor.

5 Lower In some cases, windows may break and fall. People notice electricity poles moving. Roads may
sustain damage.

5 Upper Windows may break and fall, unreinforced concrete-block walls may collapse, poorly installed
vending machines may topple over, automobiles may stop due to the difficulty of continued
movement.

6 Lower Wall tiles and windows may sustain damage and fall.
6 Upper Wall tiles and windows are more likely to break and fall. Most unreinforced concrete-block

walls collapse.
7 Wall tiles and windows are even more likely to break and fall. Reinforced concrete-block walls

may collapse.

Notes. This table is from Japan Meteorological Agency (2015).
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Table A3. Summary Statistics (Cont.)

Mean sd Min 25% Median 75% Max N

Prefecture-level Records

Risk Preference
Transformed Reservation Pricea

Pre 2011 Disasterb .8115 .03122 .7439 .791 .8148 .8305 .8882 1551
Post 2011 Disaster Measure 1 (same in Table 1)c .7524 .04935 .6154 .7231 .7597 .7887 .837 1551
Post 2011 Disaster Measure 2d .784 .03308 .6771 .7688 .7884 .8027 .8561 1551

Absolute Risk Preferencee

Pre 2011 Disasterb 1.858 .04614 1.75 1.825 1.861 1.889 1.966 1551
Post 2011 Disaster Measure 1c 1.79 .09732 1.447 1.733 1.822 1.862 1.943 1551
Post 2011 Disaster Measure 2d 1.832 .05807 1.668 1.8 1.836 1.872 1.939 1551

Predicted Probability of Earthquakes in the Maximum Casef

Average over Each Prefecture
Seismic Intensity of 6 Upper (P6+,am)
Pre 2011 .01691 .03084 0 .0002422 .006161 .01736 .17 188
Post 2011 .03576 .04486 .0006055 .007345 .01371 .05617 .1963 423

Seismic Intensity of 6 Lower (P6−,am)
Pre 2011 .114 .1336 .002051 .01769 .04346 .1746 .6066 188
Post 2011 .154 .1517 .004952 .04144 .06953 .3042 .5723 423

Seismic Intensity of 5 Upper (P5+,am)
Pre 2011 .2343 .2592 0 .01651 .116 .426 .8707 188
Post 2011 .358 .2439 .03319 .1525 .2605 .6025 .916 423

Seismic Intensity of 5 Lower (P5−,am)
Pre 2011 .5603 .2572 .09782 .3307 .5251 .8273 .9824 188
Post 2011 .6022 .2164 .1252 .4123 .611 .7889 .997 423

Predicted Probability of Earthquakes in the Average Casef

Maximum of Each Prefecture
Seismic Intensity of 6 Upper (P6+,ma)
Pre 2011 .1835 .2433 0 .009914 .07406 .2374 .9223 188
Post 2011 .308 .2411 .01573 .0932 .2577 .5167 .9252 423

Seismic Intensity of 6 Lower (P6−,ma)
Pre 2011 .4945 .2865 .01766 .2361 .4837 .7273 .9705 188
Post 2011 .5803 .2591 .08173 .3208 .6436 .7726 .9968 423

Seismic Intensity of 5 Upper (P5+,ma)
Pre 2011 .6117 .3921 0 .1858 .7889 .9413 .9993 188
Post 2011 .8239 .158 .3872 .7533 .8556 .9571 1 423

Seismic Intensity of 5 Lower (P5−,ma)
Pre 2011 .9501 .0769 .5665 .9246 .9858 .9977 1 188
Post 2011 .9572 .04665 .8042 .9274 .9679 .9985 1 423

Average over Each Prefecture
Seismic Intensity of 6 Upper (P6+,aa)
Pre 2011 .01487 .02953 0 .0002411 .003047 .01623 .167 188
Post 2011 .03173 .04287 .0006034 .004998 .008527 .05397 .1949 423

Seismic Intensity of 6 Lower (P6−,aa)
Pre 2011 .1079 .1323 .002003 .01464 .03422 .1703 .6034 188
Post 2011 .1445 .1501 .004914 .02934 .06251 .2783 .5522 423

Seismic Intensity of 5 Upper (P5+,aa)
Pre 2011 .2265 .258 0 .0149 .1027 .4221 .8669 188
Post 2011 .3428 .2477 .02985 .1269 .2427 .5859 .9102 423

Seismic Intensity of 5 Lower (P5−,aa)
Pre 2011 .548 .2631 .08094 .3214 .5085 .8273 .981 188
Post 2011 .5835 .2253 .1056 .3832 .5885 .7784 .9967 423

Notes. 1 USD is approximately equivalent to 140 JPY. Japan is composed of 47 prefectures, so in the first row, the number of observations
is 1081 = 47 ∗ 46/2. See Figure A1 and Table A1 for the definition of the same area. According to this definition, Hokkaido has no other
prefectures in the same area, so the number of observations in the corresponding row is smaller.
a: This variable measures the willingness to pay for a lottery with which they win JPY 100,000, following Hanaoka, Shigeoka and
Watanabe (2018).
b: This variable is measured in January and February 2011, before the Great East Japan Earthquake on 11 March 2011.
c: This variable is measured in January and February 2021.
d: This variable is the average of ones over three periods, measured in January and February 2012, 2016, and 2021. item e: This
corresponds to the absolute risk aversion based on Arrow-Pratt measure (Pratt, 1964). We calculate this measure based on the transformed
reservation price, following Hanaoka, Shigeoka and Watanabe (2018).
f: See the definition of the average and maximum cases in Footnote 19.
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B Additional Estimation Results

In this appendix chapter we show the robustness of our results. In Table ??, we show the

estimation results obtained when we use the other three ways of aggregation of the risk

of the future earthquakes. The remaining three are am, ma, and mm. We fix the size

of the future earthquakes to SI6− as in the main results in Table ??. We also find that

the statistically significant positive coefficients on the squared of Move Rate while the

negative coefficients attached to Move Rate is not so robustly found. Furthermore, we

find the same directed and similar sized coefficients attached to lnDin
6−,XX and its cross

term with lnTP . In Figure ??, we show the same scatter plots as in Figure ??. All of

them show that a part of pairs of the local governments suffer from the positive effects

of the increasing movers from the other prefecture on the attention to it.

Table B1. Changes in Network with a Regression Specification: Off-diagonal Elements

Dependent Variable: 1{ξij > 0}
Linear Probability Model Probit Model

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Network Measured by ln Expense for Disaster Prevention

Post 2011 -0.0476*** -0.0476*** -0.0392*** -0.0359*** -1.454*** -1.454*** -1.734*** -1.612***
(0.00467) (0.00467) (0.0126) (0.0111) (0.214) (0.217) (0.450) (0.410)

N 4324 4324 4324 4324 4324 4324 4324 4324
FE x x x x x x
Controls x x x x

Panel B: Network Measured by Ratio of Expense for Disaster Prevention to Income

Post 2011 -0.0134*** -0.0134*** -0.00761 -0.0140** -0.816*** -0.830*** -0.659 -1.037**
(0.00272) (0.00272) (0.00647) (0.00633) (0.189) (0.186) (0.401) (0.431)

N 4324 4324 4324 4324 4324 4048 4048 4048
FE x x x x x x
Controls x x x x

Notes: Heteroscedasticity-robust standard errors are in parentheses. The superscripts, ***, **, *, denote the
statistical significance at the 1 percent, 5 percent, and 10 percent level, respectively. Columns (3) and (7) use the
maximum probability over each prefecture of having an earthquake at the level of Seismic Intensity of 6 Upper or
larger in 30 years in the Maximum Case, while Columns (4) and (8) use ones at the level of Seismic Intensity of
5 Lower or larger. See Footnote 19 for the definitions of the Average Case and Maximum Case.
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Table B2. Full Results of Changes in Network After the Catastrophe: Off-diagonal
Elements

Tobit Model

(1) (2) (3) (4) (5) (6)
Post 2011 -0.277*** -0.277*** -0.111* -0.176** -0.156** -0.222***

(0.0296) (0.0295) (0.0637) (0.0739) (0.0629) (0.0788)
Similarity 0.0723 0.146 0.885** 0.983**

(0.115) (0.123) (0.434) (0.484)
log Move Rate (MR) 0.0300** 0.0183 0.0971** 0.115**

(0.0128) (0.0155) (0.0448) (0.0483)
log Distance 0.00124 -0.0236 0.0742 0.108

(0.0252) (0.0331) (0.0971) (0.102)
Risk Preference -0.0658 -0.0776 0.0300 -0.00109

(0.187) (0.184) (0.197) (0.195)
logP in -0.00705 -0.00841 -0.241 -0.198

(0.0196) (0.0279) (0.216) (0.229)
logP from 0.0169 0.0226 -0.205 -0.241

(0.0189) (0.0234) (0.246) (0.255)
Same Area Dummy -0.0136 -0.0397 -0.00145 -0.0307

(0.0642) (0.0706) (0.0646) (0.0714)

logDamagein 0.0287** 0.0282** 0.0941 0.0724
(0.0122) (0.0130) (0.0941) (0.0982)

logDamagefrom 0.0295** 0.00845 0.00525 -0.00242
(0.0132) (0.0146) (0.0951) (0.0970)

logHuman Lossin -0.00318 0.0128 -0.149 -0.0924
(0.0138) (0.0152) (0.135) (0.140)

logHuman Lossfrom -0.0228*** -0.0173* 0.00849 0.0493
(0.00787) (0.0101) (0.0934) (0.0976)

logMR× logP in 0.0212 0.0280*
(0.0137) (0.0148)

logMR× logP from 0.00355 0.00558
(0.0124) (0.0127)

logDistance× logP in 0.0347 0.0393
(0.0238) (0.0247)

logDistance× logP from 0.0161 0.0294
(0.0297) (0.0293)

Similarity× logP in 0.270* 0.268
(0.163) (0.177)

Similarity× logP from 0.171 0.147
(0.159) (0.165)

logMR× logDamagein 0.0174*** 0.0190***
(0.00613) (0.00674)

logMR× logDamagefrom -0.00590 -0.00338
(0.00594) (0.00638)

logDistance× logDamagein 0.00668 0.0131
(0.0104) (0.0111)

logDistance× logDamagefrom -0.00728 -0.00566
(0.0119) (0.0119)

Similarity× logDamagein 0.0565 0.0560
(0.0506) (0.0534)

Similarity× logDamagefrom 0.0142 0.0150
(0.0508) (0.0509)

logMR× log Human Lossin 0.0131 0.00896
(0.0103) (0.0108)

logMR× log Human Lossfrom 0.00309 0.00524
(0.00494) (0.00506)

logDistance× log Human Lossin 0.0207 0.0137
(0.0199) (0.0206)

logDistance× log Human Lossfrom 0.00575 0.00655
(0.0109) (0.0106)

Similarity× log Human Lossin 0.165** 0.120
(0.0830) (0.0841)

Similarity× log Human Lossfrom -0.0384 -0.0581
(0.0628) (0.0657)

N 4324 4324 4324 4324 4324 4324
FE x x x

Notes: Heteroscedasticity-robust standard errors are in parentheses. The superscripts, ***, **, *, denote the
statistical significance at the 1 percent, 5 percent, and 10 percent level, respectively. Before 2011, if prefecture i
has a node from prefecture j with the measure of Ratio of Expense to Income, it has one also with the measure of
log Expense. After 2011, if prefecture i has a node from prefecture j with the measure of Ratio of log Expense,
it has one also with the measure of Expense to Income.
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Table B3. Full Results of Sensitivity Check with respect to Similarity Measures: Off-
diagonal Elements

Tobit Model

(1) (2) (3)
Similarity Measure: Alla Non Geographicala Geographicala

Post 2011 -0.222*** -0.222*** -0.214***
(0.0788) (0.0788) (0.0797)

Similarity 0.983** 0.983** -0.109
(0.484) (0.484) (0.159)

log Move Rate (MR) 0.115** 0.115** 0.0879*
(0.0483) (0.0483) (0.0494)

log Distance 0.108 0.108 0.0550
(0.102) (0.102) (0.101)

Risk Preference -0.00109 -0.00110 0.0390
(0.195) (0.195) (0.193)

logP in -0.198 -0.198 0.0701
(0.229) (0.229) (0.143)

logP from -0.241 -0.241 -0.0805
(0.255) (0.255) (0.166)

Same Area Dummy -0.0307 -0.0307 -0.0420
(0.0714) (0.0714) (0.0718)

logDamagein 0.0724 0.0724 0.123
(0.0982) (0.0982) (0.0777)

logDamagefrom -0.00242 -0.00242 0.0106
(0.0970) (0.0970) (0.0735)

logHuman Lossin -0.0924 -0.0924 0.0280
(0.140) (0.140) (0.105)

logHuman Lossfrom 0.0493 0.0493 -0.0168
(0.0976) (0.0976) (0.0600)

logMR× logP in 0.0280* 0.0280* 0.0203
(0.0148) (0.0148) (0.0139)

logMR× logP from 0.00558 0.00558 0.00318
(0.0127) (0.0127) (0.0122)

logDistance× logP in 0.0393 0.0393 0.0213
(0.0247) (0.0247) (0.0233)

logDistance× logP from 0.0294 0.0294 0.0257
(0.0293) (0.0293) (0.0278)

Similarity× logP in 0.268 0.268 -0.00179
(0.177) (0.177) (0.0407)

Similarity× logP from 0.147 0.147 -0.0454
(0.165) (0.165) (0.0427)

logMR× logDamagein 0.0190*** 0.0190*** 0.0165**
(0.00674) (0.00674) (0.00671)

logMR× logDamagefrom -0.00338 -0.00338 -0.00279
(0.00638) (0.00638) (0.00623)

logDistance× logDamagein 0.0131 0.0131 0.00642
(0.0111) (0.0111) (0.0118)

logDistance× logDamagefrom -0.00566 -0.00566 -0.00228
(0.0119) (0.0119) (0.0122)

Similarity× logDamagein 0.0560 0.0560 0.0131
(0.0534) (0.0534) (0.0214)

Similarity× logDamagefrom 0.0150 0.0150 -0.0146
(0.0509) (0.0509) (0.0234)

logMR× log Human Lossin 0.00896 0.00896 0.00438
(0.0108) (0.0108) (0.00990)

logMR× log Human Lossfrom 0.00524 0.00524 0.00477
(0.00506) (0.00506) (0.00530)

logDistance× log Human Lossin 0.0137 0.0137 0.0000486
(0.0206) (0.0206) (0.0177)

logDistance× log Human Lossfrom 0.00655 0.00655 0.00689
(0.0106) (0.0106) (0.0110)

Similarity× log Human Lossin 0.120 0.120 0.0413**
(0.0841) (0.0841) (0.0206)

Similarity× log Human Lossfrom -0.0581 -0.0581 0.00801
(0.0657) (0.0657) (0.0183)

N 4324 4324 4324
FE x x x

Notes: Heteroscedasticity-robust standard errors are in parentheses. The superscripts,
***, **, *, denote the statistical significance at the 1 percent, 5 percent, and 10 percent
level, respectively. The specification is the same as Column (6) of Tables 4 and B2. Before
2011, if prefecture i has a node from prefecture j with the measure of Ratio of Expense to
Income, it also has one with the measure of log Expense. After 2011, if prefecture i has a
node from prefecture j with the measure of Ratio of log Expense, it has one also with the
measure of Expense to Income.
a: For All similarity measure, we use (i) non-geographical variables, including the pre-
dicted probability of having the maximum probability over each prefecture of having an
earthquake at the level of Seismic Intensity of 6 Upper or larger in 30 years in the Maximum
Case, the average total damage by natural hazards, the average income of a prefecture, the
average damage ratio (total damage over income), the average number of deaths due to
natural hazards, the average number of people found missing due to natural hazards, the
average number of people seriously injured due to natural hazards, the average number of
people lightly injured due to natural hazards, and (ii) geographic-related variables, such
as number of nuclear power plants as of 2018, forest ratio as of 2017, artificial forest ratio
as of 2017, and length of the coastal line as of 2016. All averages are taken over each pre
or post-2011 period. For Non-geographical similarity measure, we use the above category
(i), while for Geographical similarity measure, we use the above category (ii).
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Table B4. Robustness Check: Different Measures of Predicted Probability of Earthquakes

Tobit Model

(1) (2) (3) (4)
Measure of P : P6+,mm P6+,ma P6+,am P6+,aa

Post 2011 -0.222*** -0.222*** -0.217*** -0.223***
(0.0788) (0.0763) (0.0744) (0.0743)

Similarity 0.983** 0.802* 1.343** 1.178*
(0.484) (0.469) (0.658) (0.674)

log Move Rate (MR) 0.115** 0.0939* 0.119 0.104
(0.0483) (0.0480) (0.0736) (0.0750)

log Distance 0.108 0.0779 0.177 0.173
(0.102) (0.100) (0.161) (0.159)

Risk Preference -0.00109 -0.00114 -0.0271 -0.0170
(0.195) (0.191) (0.189) (0.189)

logP in -0.198 -0.161 -0.160 -0.155
(0.229) (0.192) (0.190) (0.176)

logP from -0.241 -0.172 -0.144 -0.119
(0.255) (0.228) (0.171) (0.168)

Same Area Dummy -0.0307 -0.0345 -0.0258 -0.0288
(0.0714) (0.0713) (0.0710) (0.0707)

logDamagein 0.0724 0.0764 0.0695 0.0717
(0.0982) (0.0975) (0.105) (0.104)

logDamagefrom -0.00242 0.00534 -0.0101 -0.00895
(0.0970) (0.0974) (0.107) (0.106)

logHuman Lossin -0.0924 -0.0954 -0.105 -0.111
(0.140) (0.141) (0.148) (0.148)

logHuman Lossfrom 0.0493 0.0581 0.0188 0.0233
(0.0976) (0.0970) (0.107) (0.108)

logMR× logP in 0.0280* 0.0203* 0.0134 0.0125
(0.0148) (0.0120) (0.0128) (0.0119)

logMR× logP from 0.00558 0.00302 0.00279 0.000752
(0.0127) (0.0116) (0.00865) (0.00870)

logDistance× logP in 0.0393 0.0325 0.0184 0.0217
(0.0247) (0.0214) (0.0202) (0.0188)

logDistance× logP from 0.0294 0.0190 0.0250 0.0198
(0.0293) (0.0260) (0.0209) (0.0200)

Similarity× logP in 0.268 0.198 0.194 0.166
(0.177) (0.134) (0.129) (0.112)

Similarity× logP from 0.147 0.105 0.0523 0.0384
(0.165) (0.146) (0.108) (0.106)

logMR× logDamagein 0.0190*** 0.0189*** 0.0176** 0.0178**
(0.00674) (0.00678) (0.00716) (0.00721)

logMR× logDamagefrom -0.00338 -0.00492 -0.00299 -0.00401
(0.00638) (0.00652) (0.00691) (0.00697)

logDistance× logDamagein 0.0131 0.0129 0.0104 0.0116
(0.0111) (0.0110) (0.0118) (0.0115)

logDistance× logDamagefrom -0.00566 -0.00760 -0.00193 -0.00325
(0.0119) (0.0119) (0.0126) (0.0126)

Similarity× logDamagein 0.0560 0.0501 0.0598 0.0526
(0.0534) (0.0526) (0.0500) (0.0496)

Similarity× logDamagefrom 0.0150 0.00355 0.00853 0.00521
(0.0509) (0.0522) (0.0570) (0.0566)

logMR× log Human Lossin 0.00896 0.00845 0.0111 0.0109
(0.0108) (0.0107) (0.0110) (0.0111)

logMR× log Human Lossfrom 0.00524 0.00561 0.00476 0.00446
(0.00506) (0.00502) (0.00547) (0.00556)

logDistance× log Human Lossin 0.0137 0.0132 0.0162 0.0170
(0.0206) (0.0206) (0.0208) (0.0210)

logDistance× log Human Lossfrom 0.00655 0.00696 0.00975 0.00948
(0.0106) (0.0106) (0.0113) (0.0114)

Similarity× log Human Lossin 0.120 0.121 0.143 0.143
(0.0841) (0.0852) (0.0956) (0.0957)

Similarity× log Human Lossfrom -0.0581 -0.0654 -0.0470 -0.0518
(0.0657) (0.0656) (0.0690) (0.0692)

N 4324 4324 4324 4324
FE x x x x

Notes: Heteroscedasticity-robust standard errors are in parentheses. The superscripts,
***, **, *, denote the statistical significance at the 1 percent, 5 percent, and 10 percent
level, respectively. Before 2011, if prefecture i has a node from prefecture j with the
measure of Ratio of Expense to Income, it has one also with the measure of log Expense.
After 2011, if prefecture i has a node from prefecture j with the measure of Ratio of log
Expense, it has one also with the measure of Expense to Income.
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Table B5. Sensitivity Analysis: Different Measures of Predicted Probability of Earth-
quakes

Tobit Model

(1) (2) (3) (4)
Measure of P : P6+,mm P6−,mm P5+,mm P5−,mm

Post 2011 -0.222*** -0.222*** -0.262*** -0.231***
(0.0788) (0.0723) (0.0928) (0.0715)

Similarity 0.983** 0.570 0.473 0.250
(0.484) (0.450) (0.660) (0.449)

log Move Rate (MR) 0.115** 0.0549 0.0542 0.0198
(0.0483) (0.0462) (0.0618) (0.0461)

log Distance 0.108 0.0474 0.135 0.0136
(0.102) (0.0890) (0.111) (0.0798)

Risk Preference -0.00109 0.00342 0.0390 0.0223
(0.195) (0.191) (0.191) (0.192)

logP in -0.198 -0.224 -0.219 -0.594
(0.229) (0.329) (0.748) (3.374)

logP from -0.241 -0.493 -1.476 -6.518
(0.255) (0.443) (1.228) (5.543)

Same Area Dummy -0.0307 -0.0325 -0.0335 -0.0286
(0.0714) (0.0719) (0.0720) (0.0722)

logDamagein 0.0724 0.0548 0.00492 0.0527
(0.0982) (0.0969) (0.107) (0.0959)

logDamagefrom -0.00242 0.0125 -0.0377 0.0126
(0.0970) (0.0992) (0.121) (0.0992)

logHuman Lossin -0.0924 -0.0847 -0.0713 -0.0648
(0.140) (0.141) (0.142) (0.144)

logHuman Lossfrom 0.0493 0.0912 0.112 0.122
(0.0976) (0.0950) (0.0925) (0.0922)

logMR× logP in 0.0280* 0.0294 0.0547 0.0974
(0.0148) (0.0207) (0.0543) (0.250)

logMR× logP from 0.00558 -0.00503 -0.00683 -0.113
(0.0127) (0.0223) (0.0625) (0.283)

logDistance× logP in 0.0393 0.0624 0.146 0.414
(0.0247) (0.0416) (0.103) (0.424)

logDistance× logP from 0.0294 0.0330 0.157 0.635
(0.0293) (0.0552) (0.159) (0.713)

Similarity× logP in 0.268 0.230 0.153 0.264
(0.177) (0.205) (0.537) (2.547)

Similarity× logP from 0.147 0.248 0.377 1.066
(0.165) (0.299) (0.778) (3.508)

logMR× logDamagein 0.0190*** 0.0188*** 0.0177** 0.0154**
(0.00674) (0.00689) (0.00761) (0.00651)

logMR× logDamagefrom -0.00338 -0.00778 -0.00537 -0.00776
(0.00638) (0.00687) (0.00775) (0.00711)

logDistance× logDamagein 0.0131 0.0156 0.0221* 0.0124
(0.0111) (0.0112) (0.0121) (0.0107)

logDistance× logDamagefrom -0.00566 -0.0107 -0.000138 -0.00955
(0.0119) (0.0122) (0.0139) (0.0122)

Similarity× logDamagein 0.0560 0.0567 0.0543 0.0394
(0.0534) (0.0487) (0.0579) (0.0487)

Similarity× logDamagefrom 0.0150 -0.0165 -0.00712 -0.0251
(0.0509) (0.0557) (0.0733) (0.0560)

logMR× log Human Lossin 0.00896 0.00683 0.00727 0.00869
(0.0108) (0.0105) (0.0105) (0.0107)

logMR× log Human Lossfrom 0.00524 0.00607 0.00600 0.00626
(0.00506) (0.00485) (0.00489) (0.00487)

logDistance× log Human Lossin 0.0137 0.00971 0.00819 0.0100
(0.0206) (0.0204) (0.0204) (0.0204)

logDistance× log Human Lossfrom 0.00655 0.00613 0.00323 0.00236
(0.0106) (0.0102) (0.00984) (0.00996)

Similarity× log Human Lossin 0.120 0.111 0.108 0.103
(0.0841) (0.0847) (0.0875) (0.0893)

Similarity× log Human Lossfrom -0.0581 -0.0879 -0.0883 -0.0895
(0.0657) (0.0657) (0.0650) (0.0656)

N 4324 4324 4324 4324
FE x x x x

Notes: Heteroscedasticity-robust standard errors are in parentheses. The superscripts,
***, **, *, denote the statistical significance at the 1 percent, 5 percent, and 10 percent
level, respectively. Before 2011, if prefecture i has a node from prefecture j with the
measure of Ratio of Expense to Income, it has one also with the measure of log Expense.
After 2011, if prefecture i has a node from prefecture j with the measure of Ratio of log
Expense, it has one also with the measure of Expense to Income.
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