Bargaining over Leasing Contracts: Strong by Privilege but Weak by Risk Aversion

> Kei Ikegami New York University

> > March 13, 2025

# (Un)fair Trading in Complex Transactions

- Fair trading benefits the economy, and regulators like the FTC enforce it
- How can they detect unfair practices?  $\rightarrow$  Clear evidence is required
  - Recordings of collusive meetings
  - Certain contractual provisions, such as resale price maintenance
  - High markups: a large gap between price and cost
- Problem: Modern business transactions involve complex transfer schemes
- Examples:
  - Share contracts for long-term business relationships
  - In two-sided markets, price and cost structures are more nuanced
- Questions:
  - How does an unfair trading environment emerge in complex transactions?
  - What happens when regulators enforce fairer practices?

## Target: Tenant Contract in Shopping Mall

• A type of share contract is used when determining monthly rent

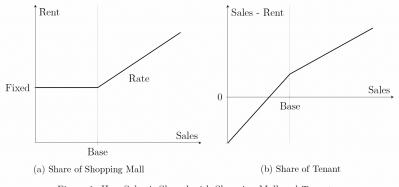



Figure 1. How Sales is Shared with Shopping Mall and Tenant

- Questions:
  - When the mall is stronger, what kind of shape is preferred?
  - In the more balanced transactions, how would the form change?

# This Study

- A model of bargaining over leasing contracts in renewal negotiations
  - Two-stage sequential bargaining between the mall and the tenant

     "Bargaining over earnings estimates" and "Bargaining over risk sharing"

     Fundamental conflict:
    - The tenant seeks to justify a higher earnings estimate
    - The mall relies on past sales data and prefers to adhere to it
- This model is applied to actual contract and sales data
  - My dataset tracks all tenants in two malls in Japan over six years
- Two opposing effects of the mall's privileged position on contract form
  - ► A privileged mall prefers variable rents and forgoes a higher fixed rent
  - A privileged mall is more risk-averse and favors a higher fixed rent
- Simulating fairer bargaining: the rent could triple the current level
  - In any cases, the total rent does not necessarily decrease
  - A sharp rise in the variable component by risk attitude adjustments

# **Related Literature**

- Empirical bargaining (Lee et al., 2021)
  - Cooperative approach
    - Separating bargaining problem from power makes model tractable
    - Application: Bargaining under externality (Horn and Wolinsky, 1988)
  - Contribution: Bargaining over contracts
- Sources of bargaining powers
  - Rubinstein (1982), Joskow (1987), Benmelech and Bergman (2008)
     Risk aversion, relational contract, and liquidation value
  - Recent empirical work: Backus et al. (2020)
  - Contribution: Better performance improves tenant's position
- Tenant leasing in shopping mall
  - Affine contract form is rationalized in agency problem: Benjamin et al. (1992), Brueckner (1993), Lee (1995), Monden et al. (2021).
  - Empirical work: Gould et al. (2005) analyze team problem in mall
  - Contribution: kinked contract form is analyzed

# Background

# Tenant leasing in a shopping mall

## **Unfair Trade Practice in Tenant Contracts**

#### • United States:

- FTC enforced consent decrees against restrictive lease clauses (e.g. exclusivity) that block competition.
- Recent cases (e.g. Simon Property) required removing "radius" restrictions preventing tenants from opening stores nearby.
- Tenant lawsuits (Lord & Taylor vs. White Flint) show courts uphold lease terms and penalize unilateral changes.

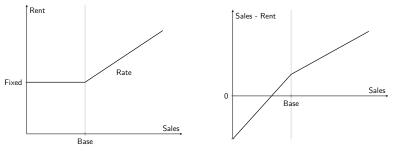
#### • Singapore:

- A Fair Tenancy Industry Code of Conduct sets standards for balanced lease terms.
- Prevents landlords from using multiple rent formulas or imposing one-sided termination rights.
- Government plans to legislate the code, ensuring compliance and dispute mediation.
- Many other cases for example in **South Korea** and **Japan**

# Shopping Mall Management and Renewal Negotiation

- A shopping mall is operated by a real estate company
  - It generates revenue through tenant rents
- Three phases of shopping mall management:
  - 1. Searching for new tenants
  - 2. Negotiating leasing contracts (including renewals)
  - 3. Maintaining relationships after tenants move in
- Negotiations are delegated to local managers and field staff
  - The company assigns a manager to each shopping mall
  - The manager assigns a representative to each tenant
- Typical flow of a renewal negotiation
  - 1. The shopping mall's initial offer: termination or a renewal proposal
  - 2. If termination is offered, this decision is non-negotiable
  - 3. Otherwise, negotiations on the terms of the new lease commence
  - 4. The tenant begins operations under the new leasing contract

# Leasing Contract


- A leasing contract is composed of
  - ▶ lease duration, restoration obligations, and monthly rent structure
- · Lease durations are typically set to a few years

After amortization, the duration is not a big issue for either side

- Restoration obligation is a condition that must be satisfied when exiting
  - A typical example is a skeleton exit
- Rent structure usually becomes a point of conflict. WHY?
  - Professionals say, "Once expected sales are agreed upon, the rent is naturally determined by industry norms."
  - Earnings estimate is their main issue

#### **Rent Structure**

- Monthly rent is typically determined by a variant of share contract
  - ▶ Defined by parameters: Fixed, Base, Rate
  - Base = threshold where commission rate changes
  - Rate = commission rate after Base
- Fixed is hard to negotiate  $\rightarrow$  Base plays a role in searching for a compromise



• General form of contract allows multiple kinks Go to all contracts

# Data

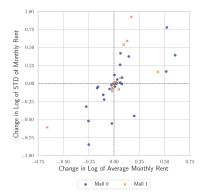
# Panel data linking performance and contract terms

#### Data Source

- Data covers two shopping malls over 6 years (2017-2023)
  - Managed by same company, by different managers
  - Located in same region (Western region of Japan)
  - One in downtown (Mall 0), one in suburb (Mall 1)
- For them, we have the following two data sources:
  - 1. performance data
  - 2. contract data
- They are used for actual leasing operation of the management company

#### **Descriptive Stats**

- 226 tenants
- They operate under 443 contracts: Avg. # of renewals is 1.00
- Avg. length of lease duration is 1830 days
- Contract terms vary a lot: All monetary values are scaled by 1,000 JPY


|                | Mean  | Std   | Min  | 25%   | 50%   | 75%   | Max    |
|----------------|-------|-------|------|-------|-------|-------|--------|
| Fixed per Area | 5.26  | 4.11  | 0.15 | 2.74  | 4.51  | 6.05  | 27.69  |
| Base per Area  | 62.02 | 43.25 | 3.22 | 42.36 | 54.78 | 60.50 | 435.57 |
| Rate (%)       | 0.91  | 0.30  | 0.20 | 0.80  | 1.00  | 1.00  | 3.50   |

Commission part is non-negligible

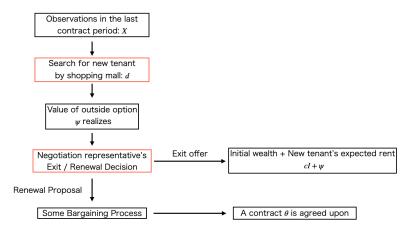
|                                 | Mean | Std  | Min  | 25%  | 50%  | 75%  | Max  |
|---------------------------------|------|------|------|------|------|------|------|
| Avg. Variable Rent / Total Rent | 0.19 | 0.19 | 0.00 | 0.02 | 0.14 | 0.31 | 0.89 |
| Prob. of Sales over Base        | 0.55 | 0.36 | 0.00 | 0.17 | 0.67 | 0.88 | 1.00 |

#### **Obs. : Risk Attitude Matters**

- For all contracts:
  - Average monthly rent
  - Standard deviation of monthly rents
- · Changes in these metrics over two successive contracts are plotted
- Higher rent must be accompanied by larger variance



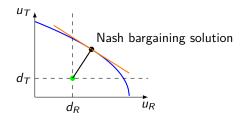
## **Obs. : Performance Affects External and Internal Margins**


- External margin: Better performance  $\rightarrow$  less exit
- Internal margin: Better performance  $\rightarrow$  more rent
- Performance surely describes bargaining position but not perfectly

|                            | (1)         | (2)         | (3)         | (4)           | (5)           | (6)           |
|----------------------------|-------------|-------------|-------------|---------------|---------------|---------------|
| Dep. Var.                  | Exit        | Exit        | Exit        | Rent Increase | Rent Increase | Rent Increase |
| Avg. Sales                 | -1.50e-09   |             |             | 0.000944*     |               |               |
|                            | (9.78e-10)  |             |             | (0.000536)    |               |               |
| Avg. Sales per Area        |             | -1.02e-08   |             |               | 0.00341***    |               |
|                            |             | (7.19e-09)  |             |               | (0.000601)    |               |
| Avg. Pct. from Bottom      |             |             | -0.00406*** |               |               | 1258.5***     |
|                            |             |             | (0.000614)  |               |               | (202.6)       |
| fixed                      | -5.77e-08** | -5.90e-08** | -3.79e-08   | 0.161***      | 0.160***      | 0.160***      |
|                            | (2.63e-08)  | (2.53e-08)  | (2.40e-08)  | (0.0253)      | (0.0255)      | (0.0251)      |
| rate                       | 0.000108**  | 0.000119**  | 0.0000360   | 80.85***      | 67.87***      | 94.43***      |
|                            | (0.0000541) | (0.0000513) | (0.0000499) | (12.01)       | (9.701)       | (11.99)       |
| area                       | 0.000401    | -0.0000225  | -0.000190   | 1560.5***     | 1802.5***     | 1918.0***     |
|                            | (0.000311)  | (0.000148)  | (0.000169)  | (237.2)       | (306.5)       | (319.8)       |
| Ν                          | 285         | 285         | 285         | 11820         | 11820         | 11820         |
| adj. <i>R</i> <sup>2</sup> | 0.021       | 0.018       | 0.145       | 0.384         | 0.383         | 0.392         |

# Model

# Sequential bargaining: earnings estimate and risk sharing

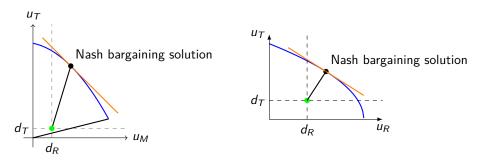

### **Model Overview**



# **Two Bargainings**

- Rent structure specifies how the sales generated in the space is divided
  - Parties face risk and uncertainty
  - ► Sales  $S \sim N(\mu, \sigma^2)$ :  $\mu$  is unknown and  $\sigma^2$  is known
- The two issues are sequentially bargained
  - ► First: Bargaining for earnings estimate
    - $\bullet$  Negotiation over  $\mu$
    - Involved parties: mall manager, M, and tenant, T
  - Second: Bargaining for risk sharing
    - $\bullet$  Negotiation over contract terms given  $\mu$
    - Involved parties: mall's representative, R, and tenant T
- I do not model incomplete information bargaining
  - I focus on what happens when power balance changes,
  - Not on how the balance is determined
  - Such model is hard to use for empirical analysis due to multiple equilibria

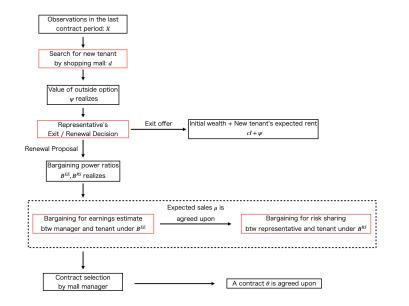
### Nash Bargaining Solution




Primitives:

Preferences of both parties, determining bargaining frontier

- Bargaining power ratio
- Break-up point
- Outcome: Surplus split between parties


# Nash-in-Nash Solution for Interrelated Bargainings



- Outcome of first bargaining (left figure) affects the bargaining frontier of the second bargaining (right figure)
- Nash-in-Nash solution:
  - Different bargaining powers are given: their ratios are B<sup>EE</sup>, B<sup>RS</sup> for each
     B = Bargaining power of Mall
     Bargaining power of Tenant

First bargaining is solved in expectation of the following outcome

## **Model Overview**



#### **Rent Structure**

- Θ is the parameter space of mixed-type contract: θ = (f, b, r) ∈ ℝ<sup>3</sup><sub>+</sub> *f* is Fixed, *b* is Base, and *r* is Rate
- The monthly rent is computed as follows

$$R(S;\theta) = f + r \times \max\{0, S - b\}$$



#### Preferences

- Tenant, denote by T:  $U_T(S; \theta) = -e^{-\rho_T(S-R(S;\theta))}$
- Representative, denoted by R:  $U_R(S; \theta) = -e^{-\rho_R(I+R(S;\theta))}$

I is the initial wealth of the shopping mall

- Manager of the mall, denoted by *M*, sticks to the realized sales information:
   ▶ Reference point: û<sub>R</sub> ≡ U<sub>R</sub> ( µ̂; θ̂ ) + 1/(2λ)
  - $\hat{\mu}$  is average of realized sales in the past contract period
  - $\hat{\theta}$  is the past contract terms
  - $\frac{1}{2\lambda}$  is a bias term: Mall's average expectation for a renewal
  - $\blacktriangleright U_{\mathcal{M}}(\mu,\theta;X) = \mathbb{E}_{S \sim \mathcal{N}(\mu,\sigma^2)} \left[ U_{\mathcal{R}}(S;\theta) \right] \lambda \left( \mathbb{E}_{S \sim \mathcal{N}(\mu,\sigma^2)} \left[ U_{\mathcal{R}}(S;\theta) \right] \hat{u}_{\mathcal{R}} \right)^2$ 
    - When  $\mathbb{E}[U_R] =$  "reference point", M feels best
    - Deviation from the reference point reduces the utility

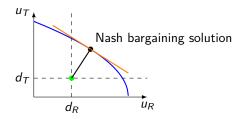
# **Summary of Theoretical Analysis**

• Assumption:  $B^{RS} = \frac{\rho_T}{\rho_R}$  from Roth and Rothblum (1982)

More risk averse mall = Weaker in the bargaining for risk sharing

- Affine contract and mixed-type contract have the same bargaining set
  - Explicit bargaining frontier and Nash-in-Nash solution Go to example
- Byproduct: the model is incomplete
  - There are the set of equilibrium mixed-type contracts
  - ▶ For empirical analysis, we need to estimate *contract selection rule*
- Both *R* and *T* like higher μ → Over optimistic contract if fully delegated
   Optimal institutional design: the authority over μ is left to the manager
- Fundamental conflict in the bargaining for earnings estimate:
  - T likes higher μ / M dislikes too much deviation from the past realization
     Stronger mall = Smaller μ

#### **Risk Sharing: Bargaining Frontier**

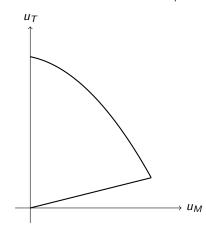

• Frontier is obtained by solving the below maximization: for every u<sub>R</sub>

 $\max_{\theta \in \Theta} \mathbb{E} \left[ U_T (J + S - R(S; \theta)) \right]$ s.t.  $\mathbb{E} \left[ U_R (I + R(S; \theta)) \right] \ge u_R.$ 

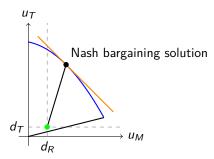
- Issue: R includes a kink, making it challenging to solve analytically
- Solution:
  - Affine contract and mixed-type contract have the same bargaining set
  - Solve the same maximization in the space of affine contract
- Byproduct: the model is incomplete
  - There are the set of equilibrium mixed-type contracts
  - ▶ For empirical analysis, we need to estimate *contract selection rule*
- The bargaining frontier

$$F(u_R) = -e^{-\rho_T \left(l + \mu - \frac{\rho_T \rho_R}{\rho_T + \rho_R} \frac{\sigma^2}{2}\right)} \left(-u_R\right)^{-\frac{\rho_T}{\rho_R}}$$

#### **Risk Sharing: Nash Bargaining Solution**

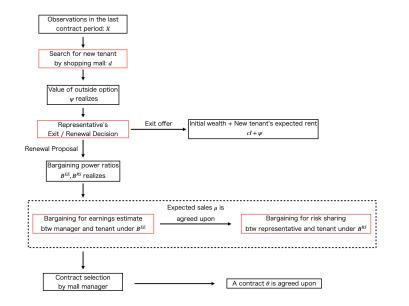



• Nash bargaining solution is determined by three objects:


- Breakup point:  $d_R = -e^{-\rho_R cl}, \ d_T = -e^{-\rho_T 0} = -1$
- Frontier specified for each  $\mu$
- ►  $B^{RS}$ : Assumption  $B^{RS} = \frac{\rho \tau}{\rho_R}$  (Roth and Rothblum, 1982)
- Both R and T like higher  $\mu 
  ightarrow$  Over optimistic contract if fully delegated
  - **>** Optimal institutional design: the authority over  $\mu$  is left to the manager

# **Earnings Estimate: Bargaining Frontier**

- Expected utility of manager:  $u_M(\mu) \equiv u_R(\mu) \lambda \left(u_R(\mu) \hat{u}_{NR}\right)^2$
- Bargaining set = Locus:  $\{(u_M(\mu), u_T(\mu)) \mid \mu \in \mathbb{R}_+\}$ 
  - For any  $\lambda > 0$ , there is some  $\mu$  such that  $\frac{d}{d\mu}u_M(\mu) < 0$  when  $\mu \geq \mu$



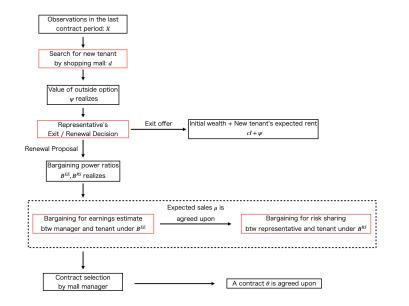

#### Earnings Estimate: Nash Bargaining Solution



- Breakup point is set to the same as before
- B<sup>EE</sup> is exogeneously given (no assumption on the value)
- The model has explicit form of the surplus split:  $u_T$ ,  $u_R$  and  $u_M$

## **Model Overview**




## **Continuation Decision**

- Representative decides either termination or continuation
- "Expected surplus from renewal" vs "Value of outside option"

$$\mathbb{E}\left[u_{R} \mid \psi\right] > -e^{-\rho_{R}(cl+\psi)}.$$

- $\psi$  : monetary value of outside option
- Expectation is taken w.r.t.  $B^{EE}$ : information gap between M and R
- Exit offer is almost non-negotiable Go to offer/outcome table

## **Model Overview**



# Value of Outside Option

- Search intensity (d): the count of the meeting with potential tenants
- d affects  $\psi$

$$\psi = \tilde{\psi} + \beta_o d$$

 $\tilde{\psi}$  is the baseline value of outside option

• Endogeneity: Better outside option might decrease the search intensity

 $\blacktriangleright~\tilde{\psi}$  and d are simultaneously determined

 $\blacktriangleright$  No full model, just a correlation structure  $\rightarrow$  Control function approach

# **Empirical Strategy**

Tobit model

#### Variables

- An ongoing contract is denoted by a pair of *i* (tenant) and *k* (mall)
- Any contract is numerated with the contract number au starting from 1
- Contract period (in months) is denoted by  $T_{ik\tau}$
- Performance is measured for every months: X
   *˜*<sub>ikt</sub> for t ∈ {1, · · · , T<sub>ikτ</sub>}
   Main measure: rank of sales per area within a mall
- For an ongoing contract, we make a measure of performance:

$$X_{ik au} = rac{1}{T}\sum_{t=1}^{T_{ik au}} ilde{X}_{ikt}$$

the average of the performance measure during the contract period

### Parametrization: Bargaining Power Ratio

Logarithm of bargaining power ratio

$$\ln B_{ik\tau}^{EE} = X_{ik\tau}' \gamma + \varepsilon_{ik\tau}^{EE},$$

three variables relating with tenant; such as rank of sales per area

- area of the tenant
- average of the previous sales per area
- average of the previous ranking of sales per area

▶ Four variables depending on the shopping mall; such as *mall total sales* 

- average of the previous mall total sales
- average of the total number of tenants in the previous lease
- average of the total number of customers in the previous lease
- average of the monthly new tenant searches in the previous lease
- ►  $\varepsilon_{ik\tau}^{EE}$  is unobserved factor

#### Parametrization: Value of Outside Option

- $\psi$  basically captures the market demand for the retail space
- $\psi$  is determined by three parts:
  - public information regarding the retail space, Z
  - search behavior conducted by the shopping mall, d
  - disturbance capturing the market's unobserved demand,  $\tilde{\epsilon}^o$
- W: IV for search intensity  $\rightarrow$  tenant specific performance measure
- Linear model (Petrin and Train, 2010, Wooldridge, 2015):

$$\begin{split} \psi_{ik\tau} &= \left( Z'_{ik\tau} \gamma^{\psi}_{o} + \varepsilon^{o}_{ik\tau} \right) + \beta_{o} d_{ik\tau} \\ d_{ik\tau} &= Z'_{ik\tau} \gamma^{d}_{o} + W_{ik\tau} \delta + \nu^{o}_{ik\tau} \\ \varepsilon_{ik\tau} &= \kappa \nu^{o}_{ik\tau} + \tilde{\varepsilon}^{o}_{ik\tau} \end{split}$$

▶  $\tilde{\varepsilon}^{o}_{ik\tau}$  is an exogeneous shock to the value of outside option

• Two random terms are i.i.d. joint Normal:  $(\epsilon^{EE}, \tilde{\epsilon}^o) \sim N(0, \Sigma)$ 

### Estimation

- Estimation is conducted separately for the two shopping malls
- Two steps:
  - 1. Control function approach to make "reduced form" of outside option
  - 2. Tobit model to estimate all the parameters

### **Estimation: Control Function Approach**

- Regression:  $d_{ik\tau} = Z'_{ik\tau} \gamma^d_o + W'_{ik\tau} \delta + \nu^o_{ik\tau}$
- Obtain residual  $\hat{\nu}^{o}_{ik\tau}$
- "Reduced form" equation for  $\psi$  is

$$\psi_{ik\tau} = Z'_{ik\tau} \gamma^{\psi}_{o} + \beta_{o} d_{ik\tau} + \kappa \hat{\nu}^{o}_{ik\tau} + \tilde{\varepsilon}^{o}_{ik\tau}$$

• Treat 
$$\hat{\nu}^{o}_{ik\tau}$$
 as an observed variable

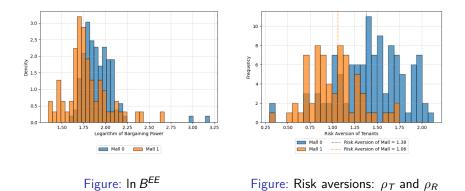
### **Estimation: Tobit Model**

• Likelihood function is constructed as in Tobit model:

$$\mathsf{Likelihood} = \begin{cases} \mathsf{Pr}(\mathsf{observe \ contract} \ \theta_{ik\tau}) & \text{if \ continuation} \\ \mathsf{Pr}(\mathsf{exit}) & \text{otherwise} \end{cases}$$

- Maximize log-likelihood under the constraint of Nash bargaining solution
  - Expected sales  $\mu_{ik\tau}$  is endogeneous

### Identification


- Two sets of parameters
  - 1. Common across tenants within a mall
    - risk aversion of mall and marginal effects of covariates etc
  - 2. Contract-specific
    - Risk aversion of tenant:  $\rho_{i\tau}$
    - Agreed upon expected sales (endogeneous parameter):  $\mu_{ik au}$
- The first set is identified by the variation of exit offer
  - ▶ The second group is removed from the continuation decision
  - ► WHY?
    - Assumption  $B^{RS} = \frac{\rho_T}{\rho_R}$  eliminates  $\rho_R$  from the decision
    - $\bullet$  Cooperative approach allows me to parametrize  ${\cal B}^{\it EE}_{ik\tau}$  determining  $\mu_{ik\tau}$
- The second set is identified by conditions of Nash solution

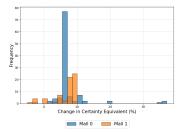
 $\blacktriangleright$  Two agents  $\rightarrow$  Two surplus expressions  $\rightarrow$  Two conditions

## Results

### Decompose bargaining power & Simulate fair contract

### Mall 0 is more privileged but more risk averse




- Mall 0 is more privileged due to high-traffic area
  - $\rightarrow$  Earnings estimate is set to lower value
  - $\rightarrow$  Commission component does not yield much rent
  - $\rightarrow$  Mall manager emphasizes Fixed, i.e., she becomes more risk averse

### What makes mall strong?

- Static characteristics
  - More number of total tenants in the mall
  - More number of total customers purchasing in the mall
  - Tenant located in the smaller retail space
- Time-varying characteristics

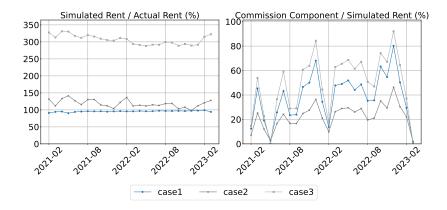
> Tenant's lower rank in terms of sales per unit area within the mall

- Time-varying components are significant
  - Simulate static version of B<sup>EE</sup>
  - Remove all the effects from time-varying variables from B<sup>EE</sup>
  - Change in certainty equivalence relative to the actual surplus
  - About 10% varies by such variables



### Inspection of Contract Selection Rule

- Empirical analysis on contract term = Estimate contract selection rule
- SUR model for the three parameters, Fixed, Base, and Rate


$$egin{pmatrix} {\sf Fixed} \\ {\sf Base} \\ {\sf Rate} \end{pmatrix} \sim {\sf Bargaining \ {\sf Powers} + {\sf Covariates} + egin{pmatrix} \epsilon_f \\ \epsilon_b \\ \epsilon_r \end{pmatrix}$$

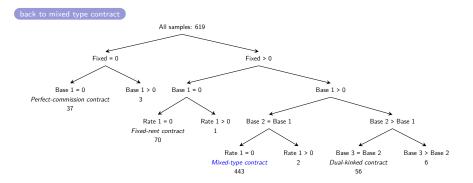
- Findings:
  - ▶ Privilege (Higher  $B^{EE}$ ) leads to smaller fixed and higher base
    - WHY: Privileged mall is more pessimistic about earnings estimate
  - Contract selection rule itself is consistent with risk attitude
    - $\bullet$  Mall 0 (Risk averse): Large volatility  $\rightarrow$  Higher Fixed
    - $\bullet$  Mall 1 (Risk loving): Higher average sales  $\rightarrow$  Higher base and Higher rate

### **Counterfactual Simulation of Fairer Trade**

- Situation:
  - Mall 0 potentially abuses its privilege when making contracts
  - Regulator enforces the fairer bargainings in renewal through warnings
- Question: How the amount of rent and its composition change?
  - $\blacktriangleright$  Why is this an empirical question?  $\rightarrow$  Two paths exist
    - 1. Weaker positions  $\rightarrow$  Higher earnings estimate  $\rightarrow$  Larger fixed rent
    - 2. Weaker position  $\rightarrow$  Less risk averse  $\rightarrow$  More commission component
- Scenarios:
  - Case 1: Replicate actual rents
  - Case 2: Mall 0's B<sup>EE</sup> is determined in the same way as in Mall 1
  - Case 3: Case 2 + Mall 0's risk aversion is set to the same value of Mall 1

### **Counterfactual Monthly Rents**




- Even in Case 2, the fairer situation does not always yield less rent
- In Case 3, I find sharp increase in commission component
- This increase could triple the amount of rent

### Conclusion

- I analyze tenant contracts in shopping malls
- I find that fair bargaining has a complex influence on contract terms
   A weaker-positioned mall may adopt riskier contract terms
- Regulators must be cautious when intervening in contract negotiations
  - Such interventions may lead to unexpected changes in contract terms
  - ... and the following transfers among them

# Appendix

### **All Rent Structures**



### **Common Brands**

back to descriptive stats

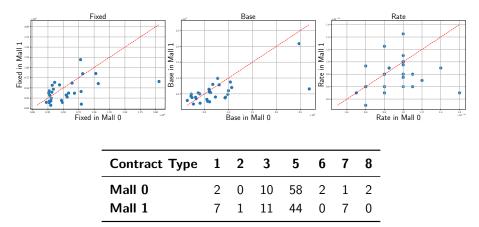



Table: Distribution of Rent Structures of Common Brands by Malls

### **Obs. 3 : Little Concern of Moral Hazard**

back to descriptive stats

- Regression: Sales  $\sim$  Rate + Base + Fixed + Covariates
- A larger fixed rent amount is assigned to tenants with higher sales

Selection exists

- Sales remain unaffected by contract terms  $\rightarrow$  Little concern of moral hazard

|                         | (1)     | (2)     | (3)           |  |  |
|-------------------------|---------|---------|---------------|--|--|
|                         | Level   | Diff    | Diff / Change |  |  |
| Rate                    | -0.063  | -0.049  | -0.180        |  |  |
|                         | (0.219) | (0.222) | (0.374)       |  |  |
| Base                    | 0.069   | 0.000   | 0.000         |  |  |
|                         | (0.206) | (0.000) | (0.000)       |  |  |
| Fixed                   | 2.839** | 0.000   | 0.000         |  |  |
|                         | (1.319) | (0.000) | (0.000)       |  |  |
| Observations            | 197     | 197     | 156           |  |  |
| Adjusted R <sup>2</sup> | 0.992   | 0.964   | 0.967         |  |  |

### **Example of Bargaining Frontier**

back to model

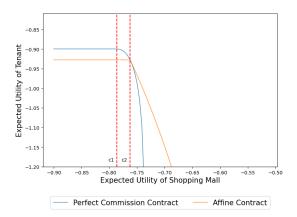



Figure: Pareto Frontiers for Perfect Commission Contracts and Affine Contracts

Note: Setting is as follows:  $I = 1.0, J = 0.0, \sigma^2 = 2.0, \mu = 1.5$ . The risk aversions are set  $\rho_T = 0.5$ .

### **Exit Offer**

back to model

| Next Contract<br>Initial Offer | exit | same | up | down | updown | TOTAL |
|--------------------------------|------|------|----|------|--------|-------|
| exit                           | 52   | 3    | 1  | 2    | 2      | 60    |
| same                           | 15   | 137  | 11 | 13   | 13     | 189   |
| up                             | 6    | 60   | 49 | 5    | 6      | 126   |
| down                           | 5    | 6    | 5  | 11   | 5      | 32    |
| updown                         | 1    | 1    | 3  | 5    | 9      | 19    |
| TOTAL                          | 79   | 207  | 69 | 36   | 35     | 426   |

#### Table: Initial Offer and Resulting Contract

*Note*: The table presents the relationship between the first initial offer (rows) and the resulting contract type (columns). Both the initial offer and the resulting contracts are categorized into five groups: exit, same, up, down, and updown. The numbers in the cells indicate the count of contracts corresponding to each combination of initial offer and resulting contract.

### **References** I

Matthew Backus, Thomas Blake, Brad Larsen, and Steven Tadelis. Sequential Bargaining in the Field: Evidence from Millions of Online Bargaining Interactions. *Quarterly Journal of Economics*, 135(3):1319–1361, 02 2020. ISSN 0033-5533. doi: 10.1093/qje/qjaa003. URL https://doi.org/10.1093/qje/qjaa003.

John D. Benjamin, Glenn W. Boyle, and C.F. Sirmans. Price discrimination in shopping center leases. *Journal of Urban Economics*, 32(3):299–317, 1992. ISSN 0094-1190. doi: https://doi.org/10.1016/0094-1190(92)90020-L. URL https:

//www.sciencedirect.com/science/article/pii/009411909290020L.

Efraim Benmelech and Nittai K. Bergman. Liquidation Values and the Credibility of Financial Contract Renegotiation: Evidence from U.S. Airlines. *Quarterly Journal of Economics*, 123(4):1635–1677, 11 2008. ISSN 0033-5533. doi: 10.1162/qjec.2008.123.4.1635. URL https://doi.org/10.1162/qjec.2008.123.4.1635.

### **References II**

- Jan K Brueckner. Inter-store Externalities and Space Allocation in Shopping Centers. Journal of Real Estate Finance and Economics, 7(1):5–16, July 1993. URL https://ideas.repec.org/a/kap/jrefec/v7y1993i1p5-16.html.
- Eric D. Gould, B. Peter Pashigian, and Canice J. Prendergast. Contracts, externalities, and incentives in shopping malls. *Review of Economics and Statistics*, 87(3):411–422, 2005. ISSN 00346535, 15309142. URL http://www.jstor.org/stable/40042938.
- Henrik Horn and Asher Wolinsky. Bilateral monopolies and incentives for merger. RAND Journal of Economics, 19(3):408-419, 1988. URL https://EconPapers.repec.org/RePEc:rje:randje:v:19:y:1988:i: autumn:p:408-419.
- Paul L. Joskow. Contract duration and relationship-specific investments: Empirical evidence from coal markets. *American Economic Review*, 77(1): 168–185, 1987. ISSN 00028282, 19447981. URL http://www.jstor.org/stable/1806736.

### References III

Kangoh Lee. Optimal retail lease contracts: the principal-agent approach. *Regional Science and Urban Economics*, 25(6):727–738, 1995. ISSN 0166-0462. doi: https://doi.org/10.1016/0166-0462(95)02104-3. URL https:

//www.sciencedirect.com/science/article/pii/0166046295021043.

Robin S. Lee, Michael D. Whinston, and Ali Yurukoglu. Structural empirical analysis of contracting in vertical markets. volume 4 of *Handbook of Industrial Organization*, pages 673–742. Elsevier, 2021. doi:

https://doi.org/10.1016/bs.hesind.2021.11.009. URL https:

//www.sciencedirect.com/science/article/pii/S1573448X21000091.

Aika Monden, Katsuyoshi Takashima, and Yusuke Zennyo. Revenue-sharing contracts under demand uncertainty in shopping center. *Real Estate Economics*, 49(2):556–573, 2021. doi:

https://doi.org/10.1111/1540-6229.12263. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1111/1540-6229.12263.

### **References IV**

- Amil Petrin and Kenneth Train. A control function approach to endogeneity in consumer choice models. *Journal of Marketing Research*, 47(1):3–13, 2010. ISSN 00222437. URL http://www.jstor.org/stable/20618950.
- Alvin E. Roth and Uriel G. Rothblum. Risk aversion and nash's solution for bargaining games with risky outcomes. *Econometrica*, 50(3):639–647, 1982. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1912605.
- Ariel Rubinstein. Perfect equilibrium in a bargaining model. *Econometrica*, 50(1): 97–109, 1982. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1912531.
- Jeffrey M. Wooldridge. Control function methods in applied econometrics. Journal of Human Resources, 50(2):420–445, 2015. ISSN 0022166X. URL http://www.jstor.org/stable/24735991.